ﻻ يوجد ملخص باللغة العربية
Atomic carbon (CI) has been proposed to be a global tracer of the molecular gas as a substitute for CO, however, its utility remains unproven. To evaluate the suitability of CI as the tracer, we performed [CI]$(^3P_1-^3P_0)$ (hereinafter [CI](1-0)) mapping observations of the northern part of the nearby spiral galaxy M83 with the ASTE telescope and compared the distributions of [CI](1-0) with CO lines (CO(1-0), CO(3-2), and $^{13}$CO(1-0)), HI, and infrared (IR) emission (70, 160, and 250$ mu$m). The [CI](1-0) distribution in the central region is similar to that of the CO lines, whereas [CI](1-0) in the arm region is distributed outside the CO. We examined the dust temperature, $T_{rm dust}$, and dust mass surface density, $Sigma_{rm dust}$, by fitting the IR continuum-spectrum distribution with a single-temperature modified blackbody. The distribution of $Sigma_{rm dust}$ shows a much better consistency with the integrated intensity of CO(1-0) than with that of [CI](1-0), indicating that CO(1-0) is a good tracer of the cold molecular gas. The spatial distribution of the [CI] excitation temperature, $T_{rm ex}$, was examined using the intensity ratio of the two [CI] transitions. An appropriate $T_{rm ex}$ at the central, bar, arm, and inter-arm regions yields a constant [C]/[H$_2$] abundance ratio of $sim7 times 10^{-5}$ within a range of 0.1 dex in all regions. We successfully detected weak [CI](1-0) emission, even in the inter-arm region, in addition to the central, arm, and bar regions, using spectral stacking analysis. The stacked intensity of [CI](1-0) is found to be strongly correlated with $T_{rm dust}$. Our results indicate that the atomic carbon is a photodissociation product of CO, and consequently, compared to CO(1-0), [CI](1-0) is less reliable in tracing the bulk of cold molecular gas in the galactic disk.
We present the results of surveying [CI] $^3P_1-^3P_0$, $^{12}$CO $J=4-3$, and 630 $mu$m dust continuum emission for 36 nearby ultra/luminous infrared galaxies (U/LIRGs) using the Band 8 receiver mounted on the Atacama Compact Array (ACA) of the Atac
We present high-quality ALMA Band 8 observations of the [CI] $^3P_1$-$^3P_0$ line and 609 $mu$m dust continuum emission toward the nearby luminous infrared galaxy (LIRG) IRAS F18293-3413, as well as matched resolution (300-pc scale) Band 3 CO $J=$1-0
We present observations of the $^3P_1$-$^3P_0$ fine-structure line of atomic carbon using the ASTE 10 m sub-mm telescope towards RCW38, the youngest super star cluster in the Milky Way. The detected [CI] emission is compared with the CO $J$ = 1-0 ima
We present first results of neutral carbon ([CI], 3P1 - 3P0 at 492 GHz) and carbon monoxide (13CO, J = 1 - 0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the
The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7,138 HII regions