ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping metallicity variations across nearby galaxy disks

89   0   0.0 ( 0 )
 نشر من قبل Kathryn Stanonik Kreckel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7,138 HII regions across the disks of eight nearby galaxies using VLT/MUSE optical integral field spectroscopy as part of the PHANGS-MUSE survey. After removing the first order radial gradients present in each galaxy, we look at the statistics of the metallicity offset (Delta O/H) and explore azimuthal variations. Across each galaxy, we find low (sigma=0.03-0.05 dex) scatter at any given radius, indicative of efficient mixing. We compare physical parameters for those HII regions that are 1 sigma outliers towards both enhanced and reduced abundances. Regions with enhanced abundances have high ionization parameter, higher Halpha luminosity, lower Halpha velocity dispersion, younger star clusters and associated molecular gas clouds show higher molecular gas densities. This indicates recent star formation has locally enriched the material. Regions with reduced abundances show increased Halpha velocity dispersions, suggestive of mixing introducing more pristine material. We observe subtle azimuthal variations in half of the sample, but can not always cleanly associate this with the spiral pattern. Regions with enhanced and reduced abundances are found distributed throughout the disk, and in half of our galaxies we can identify subsections of spiral arms with clearly associated metallicity gradients. This suggests spiral arms play a role in organizing and mixing the ISM.



قيم البحث

اقرأ أيضاً

The distribution of gas-phase abundances in galaxy disks encodes the history of nucleosynthesis and transport through the interstellar medium (ISM) over cosmic time. Multi-object and high resolution integral-field spectroscopy have started to measure these distributions across hundreds of HII regions individually resolved at $lesssim 100$ pc scales in a handful of objects, but in the coming decade these studies will expand to larger samples of galaxies. This will allow us to understand the role of feedback and turbulence in driving the mixing and diffusion of metals in the ISM, and statistically assess the role of galaxy environment and disk dynamics in modifying how mixing proceeds. Detailed searches for over- and under-enriched regions can address to what extent star formation is triggered by previous generations of star formation and by pristine and recycled gas flows. Local galaxies, for which these detailed measurements will be possible within the next decade, will inform the interpretation of integrated measurements at high-z, where very different dynamical gas-rich environments are found in early disk galaxies. Currently, progress in the field is severely hampered by the 0.2-0.3 dex level systematic uncertainties plaguing nebular abundance diagnostics. Improving our detailed understanding of ionized nebulae at $<$20 pc scales will help us find a solution to this problem, which will prove key to the study of metal enrichment and mixing across the galaxy population in the next decade.
We report one of the first extragalactic observations of electron temperature variations across a spiral arm. Using MUSE mosaic observations of the nearby galaxy NGC 1672, we measure the [N II]5755 auroral line in a sample of 80 HII regions in the ea stern spiral arm of NGC1672. We discover systematic temperature variations as a function of distance perpendicular to the spiral arm. The electron temperature is lowest on the spiral arm itself and highest on the downstream side. Photoionization models of different metallicity, pressure, and age of the ionizing source are explored to understand what properties of the interstellar medium drive the observed temperature variations. An azimuthally varying metallicity appears to be the most likely cause of the temperature variations. The electron temperature measurements solidify recent discoveries of azimuthal variations of oxygen abundance based on strong lines, and rule out the possibility that the abundance variations are artefacts of the strong-line calibrations.
This letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution $N$-body simulations, we model composite stellar discs, made of kinema tically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.
We present SOFIA/FIFI-LS observations of the [CII] 158${mu}$m cooling line across the nearby spiral galaxy NGC 6946. We combine these with UV, IR, CO, and H I data to compare [CII] emission to dust properties, star formation rate (SFR), H$_2$, and HI at 560pc scales via stacking by environment (spiral arms, interarm, and center), radial profiles, and individual, beam-sized measurements. We attribute $73%$ of the [CII] luminosity to arms, and $19%$ and $8%$ to the center and interarm region, respectively. [CII]/TIR, [CII]/CO, and [CII]/PAH radial profiles are largely constant, but rise at large radii ($gtrsim$8kpc) and drop in the center ([CII] deficit). This increase at large radii and the observed decline with the 70${mu}$m/100${mu}$m dust color are likely driven by radiation field hardness. We find a near proportional [CII]-SFR scaling relation for beam-sized regions, though the exact scaling depends on methodology. [CII] also becomes increasingly luminous relative to CO at low SFR (interarm or large radii), likely indicating more efficient photodissociation of CO and emphasizing the importance of [CII] as an H$_2$ and SFR tracer in such regimes. Finally, based on the observed [CII] and CO radial profiles and different models, we find ${alpha}_{CO}$ to increase with radius, in line with the observed metallicity gradient. The low ${alpha}_{CO}$ (galaxy average $lesssim2,M_{sun},pc^{-2},(K,km,s^{-1})^{-1}$) and low [CII]/CO ratios ($sim$400 on average) imply little CO-dark gas across NGC 6946, in contrast to estimates in the Milky Way.
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0$pm$0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4$pm$0.9) and ultraluminous infrared galaxies (1.1$pm$0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends qualitatively agree with expectations for carbon and oxygen isotopic abundance variations due to stellar nucleosynthesis, with a possible effect of fractionation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا