ﻻ يوجد ملخص باللغة العربية
Shift invariance is a critical property of CNNs that improves performance on classification. However, we show that invariance to circular shifts can also lead to greater sensitivity to adversarial attacks. We first characterize the margin between classes when a shift-invariant linear classifier is used. We show that the margin can only depend on the DC component of the signals. Then, using results about infinitely wide networks, we show that in some simple cases, fully connected and shift-invariant neural networks produce linear decision boundaries. Using this, we prove that shift invariance in neural networks produces adversarial examples for the simple case of two classes, each consisting of a single image with a black or white dot on a gray background. This is more than a curiosity; we show empirically that with real datasets and realistic architectures, shift invariance reduces adversarial robustness. Finally, we describe initial experiments using synthetic data to probe the source of this connection.
We present a unified invariance framework for supervised neural networks that can induce independence to nuisance factors of data without using any nuisance annotations, but can additionally use labeled information about biasing factors to force thei
Data representations that contain all the information about target variables but are invariant to nuisance factors benefit supervised learning algorithms by preventing them from learning associations between these factors and the targets, thus reduci
Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the las
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift clos
While adversarial training can improve robust accuracy (against an adversary), it sometimes hurts standard accuracy (when there is no adversary). Previous work has studied this tradeoff between standard and robust accuracy, but only in the setting wh