ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Adversarial Invariance

59   0   0.0 ( 0 )
 نشر من قبل Ayush Jaiswal
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Data representations that contain all the information about target variables but are invariant to nuisance factors benefit supervised learning algorithms by preventing them from learning associations between these factors and the targets, thus reducing overfitting. We present a novel unsupervised invariance induction framework for neural networks that learns a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, without needing any labeled information about nuisance factors or domain knowledge. We describe an adversarial instantiation of this framework and provide analysis of its working. Our unsupervised model outperforms state-of-the-art methods, which are supervised, at inducing invariance to inherent nuisance factors, effectively using synthetic data augmentation to learn invariance, and domain adaptation. Our method can be applied to any prediction task, eg., binary/multi-class classification or regression, without loss of generality.



قيم البحث

اقرأ أيضاً

We present a unified invariance framework for supervised neural networks that can induce independence to nuisance factors of data without using any nuisance annotations, but can additionally use labeled information about biasing factors to force thei r removal from the latent embedding for making fair predictions. Invariance to nuisance is achieved by learning a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, whereas that to biasing factors is brought about by penalizing the network if the latent embedding contains any information about them. We describe an adversarial instantiation of this framework and provide analysis of its working. Our model outperforms previous works at inducing invariance to nuisance factors without using any labeled information about such variables, and achieves state-of-the-art performance at learning independence to biasing factors in fairness settings.
In this paper, we address the problem of speaker recognition in challenging acoustic conditions using a novel method to extract robust speaker-discriminative speech representations. We adopt a recently proposed unsupervised adversarial invariance arc hitecture to train a network that maps speaker embeddings extracted using a pre-trained model onto two lower dimensional embedding spaces. The embedding spaces are learnt to disentangle speaker-discriminative information from all other information present in the audio recordings, without supervision about the acoustic conditions. We analyze the robustness of the proposed embeddings to various sources of variability present in the signal for speaker verification and unsupervised clustering tasks on a large-scale speaker recognition corpus. Our analyses show that the proposed system substantially outperforms the baseline in a variety of challenging acoustic scenarios. Furthermore, for the task of speaker diarization on a real-world meeting corpus, our system shows a relative improvement of 36% in the diarization error rate compared to the state-of-the-art baseline.
Solutions to differential equations are of significant scientific and engineering relevance. Recently, there has been a growing interest in solving differential equations with neural networks. This work develops a novel method for solving differentia l equations with unsupervised neural networks that applies Generative Adversarial Networks (GANs) to emph{learn the loss function} for optimizing the neural network. We present empirical results showing that our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude lower mean squared errors than an alternative unsupervised neural network method based on (squared) $L_2$, $L_1$, and Huber loss functions. Moreover, we show that DEQGAN achieves solution accuracy that is competitive with traditional numerical methods. Finally, we analyze the stability of our approach and find it to be sensitive to the selection of hyperparameters, which we provide in the appendix. Code available at https://github.com/dylanrandle/denn. Please address any electronic correspondence to [email protected].
For enterprise, personal and societal applications, there is now an increasing demand for automated authentication of identity from images using computer vision. However, current authentication technologies are still vulnerable to presentation attack s. We present RoPAD, an end-to-end deep learning model for presentation attack detection that employs unsupervised adversarial invariance to ignore visual distractors in images for increased robustness and reduced overfitting. Experiments show that the proposed framework exhibits state-of-the-art performance on presentation attack detection on several benchmark datasets.
Shift invariance is a critical property of CNNs that improves performance on classification. However, we show that invariance to circular shifts can also lead to greater sensitivity to adversarial attacks. We first characterize the margin between cla sses when a shift-invariant linear classifier is used. We show that the margin can only depend on the DC component of the signals. Then, using results about infinitely wide networks, we show that in some simple cases, fully connected and shift-invariant neural networks produce linear decision boundaries. Using this, we prove that shift invariance in neural networks produces adversarial examples for the simple case of two classes, each consisting of a single image with a black or white dot on a gray background. This is more than a curiosity; we show empirically that with real datasets and realistic architectures, shift invariance reduces adversarial robustness. Finally, we describe initial experiments using synthetic data to probe the source of this connection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا