ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of miniaturized bound states in the continuum with ultra-high quality factors

123   0   0.0 ( 0 )
 نشر من قبل Chao Peng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light trapping is a constant pursuit in photonics because of its importance in science and technology. Many mechanisms have been explored, including the use of mirrors made of materials or structures that forbid outgoing waves, and bound states in the continuum that are mirror-less but based on topology. Here we report a compound method, combing mirrors and bound states in the continuum in an optimized way, to achieve a class of on-chip optical cavities that have high quality factors and small modal volumes. Specifically, light is trapped in the transverse direction by the photonic band gap of the lateral hetero-structure and confined in the vertical direction by the constellation of multiple bound states in the continuum. As a result, unlike most bound states in the continuum found in photonic crystal slabs that are de-localized Bloch modes, we achieve light-trapping in all three dimensions and experimentally demonstrate quality factors as high as $Q = 1.09 times 10^6$ and modal volumes as low as $V = 3.56~ mu m^3$ in the telecommunication regime. We further prove the robustness of our method through the statistical study of multiple fabricated devices. Our work provides a new method of light trapping, which can find potential applications in photonic integration, nonlinear optics and quantum computing.



قيم البحث

اقرأ أيضاً

Unidirectional radiation is important for a variety of optoelectronic applications. Many unidirectional emitters exist, but they all rely on the use of materials or structures that forbid outgoing waves, i.e. mirrors. Here, we theoretically propose a nd experimentally demonstrate a class of resonances in photonic crystal slabs, which only radiate towards a single side with no mirror placed on the other side - we call them ``unidirectional bound states in the continuum. These resonances are found to emerge when a pair of half-integer topological charges in the polarization field bounce into each other in the momentum space. We experimentally demonstrate such resonances in the telecommunication regime, where we achieve single-sided quality factor as high as 1.6e5, equivalent to a radiation asymmetry ratio of 27.7 dB. Our work represents a vivid example of applying topological principles to improve optoelectronic devices. Possible applications of our work include grating couplers, photoniccrystal surface-emitting lasers, and antennas for light detection and ranging.
We reveal that metasurfaces created by seemingly different lattices of (dielectric or metallic) meta-atoms with broken in-plane symmetry can support sharp high-$Q$ resonances that originate from the physics of bound states in the continuum. We prove rigorously a direct link between the bound states in the continuum and the Fano resonances, and develop a general theory of such metasurfaces, suggesting the way for smart engineering of resonances for many applications in nanophotonics and meta-optics.
The concept of optical bound states in the continuum (BICs) underpins the existence of strongly localized waves embedded into the radiation spectrum that can enhance the electromagnetic fields in subwavelength photonic structures. Early studies of op tical BICs in waveguides and photonic crystals uncovered their topological properties, and the concept of quasi-BIC metasurfaces facilitated applications of strong light-matter interactions to biosensing, lasing, and low-order nonlinear processes. Here we employ BIC-empowered dielectric metasurfaces to generate efficiently high optical harmonics up to the 11th order. We optimize a BIC mode for the first few harmonics and observe a transition between perturbative and nonperturbative nonlinear regimes. We also suggest a general strategy for designing subwavelength structures with strong resonances and nonperturbative nonlinearities. Our work bridges the fields of perturbative and nonperturbative nonlinear optics on the subwavelength scale.
We propose a new paradigm for realizing bound states in the continuum (BICs) by engineering the environment of a system to control the number of available radiation channels. Using this method, we demonstrate that a photonic crystal slab embedded in a photonic crystal environment can exhibit both isolated points and lines of BICs in different regions of its Brillouin zone. Finally, we demonstrate that the intersection between a line of BICs and line of leaky resonance can yield exceptional points connected by a bulk Fermi arc. The ability to design the environment of a system opens up a broad range of experimental possibilities for realizing BICs in three-dimensional geometries, such as in 3D-printed structures and the planar grain boundaries of self-assembled systems.
Bound states in the continuum (BICs) are radiationless localized states embedded in the part of the parameter space that otherwise corresponds to radiative modes. Many decades after their original prediction and early observations in acoustic systems , such states have been demonstrated recently in photonic structures with engineered geometries. Here, we put forward a mechanism, based on waveguiding structures that contain anisotropic birefringent materials, that affords the existence of BICs with fundamentally new properties. In particular, anisotropy-induced BICs may exist in symmetric as well as in asymmetric geometries; they form in tunable angular propagation directions; their polarization may be pure transverse electric, pure transverse magnetic or full vector with tunable polarization hybridity; and they may be the only possible bound states of properly designed structures, and thus appear as a discrete, isolated bound state embedded in a whole sea of radiative states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا