ﻻ يوجد ملخص باللغة العربية
We propose a new paradigm for realizing bound states in the continuum (BICs) by engineering the environment of a system to control the number of available radiation channels. Using this method, we demonstrate that a photonic crystal slab embedded in a photonic crystal environment can exhibit both isolated points and lines of BICs in different regions of its Brillouin zone. Finally, we demonstrate that the intersection between a line of BICs and line of leaky resonance can yield exceptional points connected by a bulk Fermi arc. The ability to design the environment of a system opens up a broad range of experimental possibilities for realizing BICs in three-dimensional geometries, such as in 3D-printed structures and the planar grain boundaries of self-assembled systems.
Bound states in the continuum (BICs) are radiationless localized states embedded in the part of the parameter space that otherwise corresponds to radiative modes. Many decades after their original prediction and early observations in acoustic systems
We uncover a novel mechanism for superscattering of subwavelength resonators closely associated with the physics of bound states in the continuum. We demonstrate that superscattering occurs as a consequence of constructive interference driven by the
Photonic crystal slabs (PCSs) are a well-studied class of devices known to support optical Fano resonances for light normally incident to the slab, useful for narrowband filters, modulators, and nonlinear photonic devices. In shallow-etched PCSs the
Bound states in the continuum (BICs), an emerging type of long-lived resonances different from the cavity-based ones, have been explored in several classical systems, including photonic crystals and surface acoustic waves. Here, we reveal symmetry-pr
We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical pr