ترغب بنشر مسار تعليمي؟ اضغط هنا

Monodromy and Irreducibility of Igusa Varieties

78   0   0.0 ( 0 )
 نشر من قبل Luciena Xiao Xiao
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the irreducible components of Igusa varieties for Shimura varieties of Hodge type and use that to determine the irreducible components of central leaves. In particular, we show that the discrete Hecke-orbit conjecture is false in general. Our method combines recent work of DAddezio on monodromy of compatible local systems with a generalisation of a method of Hida, using the Honda-Tate theory for Shimura varieties of Hodge type developed by Kisin-Madapusi Pera-Shin. We also determine the irreducible components of Newton strata in Shimura varieties of Hodge type by combining our results with recent work of Zhou-Zhu.



قيم البحث

اقرأ أيضاً

Bruinier and Yang conjectured a formula for an intersection number on the arithmetic Hilbert modular surface, CM(K).T_m, where CM(K) is the zero-cycle of points corresponding to abelian surfaces with CM by a primitive quartic CM field K, and T_m is t he Hirzebruch-Zagier divisors parameterizing products of elliptic curves with an m-isogeny between them. In this paper, we examine fields not covered by Yangs proof of the conjecture. We give numerical evidence to support the conjecture and point to some interesting anomalies. We compare the conjecture to both the denominators of Igusa class polynomials and the number of solutions to the embedding problem stated by Goren and Lauter.
331 - Pascal Boyer 2019
Given a KHT Shimura variety provided with an action of its unramified Hecke algebra $mathbb T$, we proved in a previous work, see also the work of Caraiani-Scholze for other PEL Shimura varieties, that its localized cohomology groups at a generic max imal ideal $mathfrak m$ of $mathbb T$, appear to be free. In this work, we obtain the same result for $mathfrak m$ such that its associated galoisian $overline{mathbb F}_l$-representation $overline{rho_{mathfrak m}}$ is irreducible.
Let $k$ be an algebraically closed field of characteristic $p$ and let $X$ the projective line over $k$ with three points removed. We investigate which finite groups $G$ can arise as the monodromy group of finite {e}tale covers of $X$ that are tamely ramified over the three removed points. This provides new information about the tame fundamental group of the projective line. In particular, we show that for each prime $pge 5$, there are families of tamely ramified covers with monodromy the symmetric group $S_n$ or alternating group $A_n$ for infinitely many $n$. These covers come from the moduli spaces of elliptic curves with $PSL_2(mathbb{F}_ell)$-structure, and the analysis uses work of Bourgain, Gamburd, and Sarnak, and adapts work of Meiri and Puder, about Markoff triples modulo $ell$.
We completely solve a problem of S. Zhang about the positivity of a normalized height on the moduli space of semistable varieties of given degree and given dimension.
197 - Yuri G. Zarhin 2015
Let $E$ be an elliptic curve without CM that is defined over a number field $K$. For all but finitely many nonarchimedean places $v$ of $K$ there is the reduction $E(v)$ of $E$ at $v$ that is an elliptic curve over the residue field $k(v)$ at $v$. Th e set of $v$s with ordinary $E(v)$ has density 1 (Serre). For such $v$ the endomorphism ring $End(E(v))$ of $E(v)$ is an order in an imaginary quadratic field. We prove that for any pair of relatively prime positive integers $N$ and $M$ there are infinitely many nonarchimedean places $v$ of $K$ such that the discriminant $Delta(v)$ of $End(E(v))$ is divisible by $N$ and the ratio $Delta(v)/N$ is relatively prime to $NM$. We also discuss similar questions for reductions of abelian varieties. The subject of this paper was inspired by an exercise in Serres Abelian $ell$-adic representations and elliptic curves and questions of Mihran Papikian and Alina Cojocaru.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا