ﻻ يوجد ملخص باللغة العربية
Early detection of suicidal ideation in depressed individuals can allow for adequate medical attention and support, which in many cases is life-saving. Recent NLP research focuses on classifying, from a given piece of text, if an individual is suicidal or clinically healthy. However, there have been no major attempts to differentiate between depression and suicidal ideation, which is an important clinical challenge. Due to the scarce availability of EHR data, suicide notes, or other similar verified sources, web query data has emerged as a promising alternative. Online sources, such as Reddit, allow for anonymity that prompts honest disclosure of symptoms, making it a plausible source even in a clinical setting. However, these online datasets also result in lower performance, which can be attributed to the inherent noise in web-scraped labels, which necessitates a noise-removal process. Thus, we propose SDCNL, a suicide versus depression classification method through a deep learning approach. We utilize online content from Reddit to train our algorithm, and to verify and correct noisy labels, we propose a novel unsupervised label correction method which, unlike previous work, does not require prior noise distribution information. Our extensive experimentation with multiple deep word embedding models and classifiers display the strong performance of the method in anew, challenging classification application. We make our code and dataset available at https://github.com/ayaanzhaque/SDCNL
In this paper, we present empirical analysis on basic and depression specific multi-emotion mining in Tweets with the help of state of the art multi-label classifiers. We choose our basic emotions from a hybrid emotion model consisting of the common
The laborious process of labeling data often bottlenecks projects that aim to leverage the power of supervised machine learning. Active Learning (AL) has been established as a technique to ameliorate this condition through an iterative framework that
Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fi
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label. Most existing methods elaborately designed learning objectiv
Although unsupervised person re-identification (Re-ID) has drawn increasing research attention recently, it remains challenging to learn discriminative features without annotations across disjoint camera views. In this paper, we address the unsupervi