ﻻ يوجد ملخص باللغة العربية
In this paper, we present empirical analysis on basic and depression specific multi-emotion mining in Tweets with the help of state of the art multi-label classifiers. We choose our basic emotions from a hybrid emotion model consisting of the common emotions from four highly regarded psychological models of emotions. Moreover, we augment that emotion model with new emotion categories because of their importance in the analysis of depression. Most of those additional emotions have not been used in previous emotion mining research. Our experimental analyses show that a cost sensitive RankSVM algorithm and a Deep Learning model are both robust, measured by both Macro F-measures and Micro F-measures. This suggests that these algorithms are superior in addressing the widely known data imbalance problem in multi-label learning. Moreover, our application of Deep Learning performs the best, giving it an edge in modeling deep semantic features of our extended emotional categories.
Early detection of suicidal ideation in depressed individuals can allow for adequate medical attention and support, which in many cases is life-saving. Recent NLP research focuses on classifying, from a given piece of text, if an individual is suicid
One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper,
Multi-label classification tasks such as OCR and multi-object recognition are a major focus of the growing machine learning as a service industry. While many multi-label prediction APIs are available, it is challenging for users to decide which API t
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more