ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Mathematics of Swarming: Emergent Behavior in Alignment Dynamics

98   0   0.0 ( 0 )
 نشر من قبل Eitan Tadmor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eitan Tadmor




اسأل ChatGPT حول البحث

We overview recent developments in the study of alignment hydrodynamics, driven by a general class of symmetric communication kernels. A main question of interest is to characterize the emergent behavior of such systems, which we quantify in terms of the spectral gap of a weighted Laplacian associated with the alignment operator. Our spectral analysis of energy fluctuation covers both long-range and short-range kernels and does not require thermal equilibrium (no closure for the pressure). In particular, in the prototypical case of metric-based short-range kernels, the spectral gap admits a lower-bound expressed in terms of the discrete Fourier coefficients of the radial kernel, which enables us to quantify an emerging flocking behavior for non-vacuous solutions. These large-time behavior results apply as long as the solutions remain smooth. It is known that global smooth solutions exist in one and two spatial dimensions, subject to sub-critical initial data. We settle the question for arbitrary dimension, obtaining non-trivial initial threshold conditions which guarantee existence of multiD global smooth solutions.



قيم البحث

اقرأ أيضاً

We study the multi-scale description of large-time collective behavior of agents driven by alignment. The resulting multi-flock dynamics arises naturally with realistic initial configurations consisting of multiple spatial scaling, which in turn peak at different time scales. We derive a `master-equation which describes a complex multi-flock congregations governed by two ingredients: (i) a fast inner-flock communication; and (ii) a slow(-er) inter-flock communication. The latter is driven by macroscopic observables which feature the up-scaling of the problem. We extend the current mono-flock theory, proving a series of results which describe rates of multi-flocking with natural dependencies on communication strengths. Both agent-based, kinetic, and hydrodynamic descriptions are considered, with particular emphasis placed on the discrete and macroscopic descriptions.
We concentrate on kinetic models for swarming with individuals interacting through self-propelling and friction forces, alignment and noise. We assume that the velocity of each individual relaxes to the mean velocity. In our present case, the equilib ria depend on the density and the orientation of the mean velocity, whereas the mean speed is not anymore a free parameter and a phase transition occurs in the homogeneous kinetic equation. We analyze the profile of equilibria for general potentials identifying a family of potentials leading to phase transitions. Finally, we derive the fluid equations when the interaction frequency becomes very large.
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise i ntensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
Here we study the emergence of spontaneous leadership in large populations. In standard models of opinion dynamics, herding behavior is only obeyed at the local scale due to the interaction of single agents with their neighbors; while at the global s cale, such models are governed by purely diffusive processes. Surprisingly, in this paper we show that the combination of a strong separation of time scales within the population and a hierarchical organization of the influences of some agents on the others induces a phase transition between a purely diffusive phase, as in the standard case, and a herding phase where a fraction of the agents self-organize and lead the global opinion of the whole population.
Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information using the algorithm by Kraskov et al. (2004) which is based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا