ﻻ يوجد ملخص باللغة العربية
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
We consider the spatially homogeneous Boltzmann equation for ballistic annihilation in dimension d 2. Such model describes a system of ballistic hard spheres that, at the moment of interaction, either annihilate with probability $alpha$ $in$ (0, 1) o
We study the McKean-Vlasov equation [ partial_t varrho= beta^{-1} Delta varrho + kappa abla cdot (varrho abla (W star varrho)) , , ] with periodic boundary conditions on the torus. We first study the global asymptotic stability of the homogeneous s
The goal of these lecture notes is to present in a unified way various models for the dynamics of aligning self-propelled rigid bodies at different scales and the links between them. The models and methods are inspired from [12,13], but, in addition,
We present a simple model of alignment of a large number of rigid bodies (modeled by rotation matrices) subject to internal rotational noise. The numerical simulations exhibit a phenomenon of first order phase transition with respect the alignment in
In this article we investigate the phase transition phenomena that occur in a model of self-organisation through body-attitude coordination. Here, the body-attitude of an agent is modelled by a rotation matrix in $mathbb{R}^3$ as in [Degond, Frouvell