ﻻ يوجد ملخص باللغة العربية
In recent years, physiological signal based authentication has shown great promises,for its inherent robustness against forgery. Electrocardiogram (ECG) signal, being the most widely studied biosignal, has also received the highest level of attention in this regard. It has been proven with numerous studies that by analyzing ECG signals from different persons, it is possible to identify them, with acceptable accuracy. In this work, we present, EDITH, a deep learning-based framework for ECG biometrics authentication system. Moreover, we hypothesize and demonstrate that Siamese architectures can be used over typical distance metrics for improved performance. We have evaluated EDITH using 4 commonly used datasets and outperformed the prior works using less number of beats. EDITH performs competitively using just a single heartbeat (96-99.75% accuracy) and can be further enhanced by fusing multiple beats (100% accuracy from 3 to 6 beats). Furthermore, the proposed Siamese architecture manages to reduce the identity verification Equal Error Rate (EER) to 1.29%. A limited case study of EDITH with real-world experimental data also suggests its potential as a practical authentication system.
The rapid developments in advanced sensing and imaging bring about a data-rich environment, facilitating the effective modeling, monitoring, and control of complex systems. For example, the body-sensor network captures multi-channel information perti
Ensuring the privacy of sensitive data used to train modern machine learning models is of paramount importance in many areas of practice. One approach to study these concerns is through the lens of differential privacy. In this framework, privacy gua
Deep neural networks, including reinforcement learning agents, have been proven vulnerable to small adversarial changes in the input, thus making deploying such networks in the real world problematic. In this paper, we propose RADIAL-RL, a method to
This paper considers the problem of differentially private semi-supervised transfer learning. The notion of membership-mapping is developed using measure theory basis to learn data representation via a fuzzy membership function. An alternative concep
Recent work has discovered that deep reinforcement learning (DRL) policies are vulnerable to adversarial examples. These attacks mislead the policy of DRL agents by perturbing the state of the environment observed by agents. They are feasible in prin