ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-constrained Deep Learning for Robust Inverse ECG Modeling

125   0   0.0 ( 0 )
 نشر من قبل Bing Yao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rapid developments in advanced sensing and imaging bring about a data-rich environment, facilitating the effective modeling, monitoring, and control of complex systems. For example, the body-sensor network captures multi-channel information pertinent to the electrical activity of the heart (i.e., electrocardiograms (ECG)), which enables medical scientists to monitor and detect abnormal cardiac conditions. However, the high-dimensional sensing data are generally complexly structured and realizing the full data potential depends to a great extent on advanced analytical and predictive methods. This paper presents a physics-constrained deep learning (P-DL) framework for high-dimensional inverse ECG modeling. This method integrates the physical laws of the complex system with the advanced deep learning infrastructure for effective prediction of the system dynamics. The proposed P-DL approach is implemented to solve the inverse ECG model and predict the time-varying distribution of electric potentials in the heart from the ECG data measured by the body-surface sensor network. Experimental results show that the proposed P-DL method significantly outperforms existing methods that are commonly used in current practice.



قيم البحث

اقرأ أيضاً

Background: Floods are the most common natural disaster in the world, affecting the lives of hundreds of millions. Flood forecasting is therefore a vitally important endeavor, typically achieved using physical water flow simulations, which rely on ac curate terrain elevation maps. However, such simulations, based on solving partial differential equations, are computationally prohibitive on a large scale. This scalability issue is commonly alleviated using a coarse grid representation of the elevation map, though this representation may distort crucial terrain details, leading to significant inaccuracies in the simulation. Contributions: We train a deep neural network to perform physics-informed downsampling of the terrain map: we optimize the coarse grid representation of the terrain maps, so that the flood prediction will match the fine grid solution. For the learning process to succeed, we configure a dataset specifically for this task. We demonstrate that with this method, it is possible to achieve a significant reduction in computational cost, while maintaining an accurate solution. A reference implementation accompanies the paper as well as documentation and code for dataset reproduction.
Deep Learning (DL), in particular deep neural networks (DNN), by design is purely data-driven and in general does not require physics. This is the strength of DL but also one of its key limitations when applied to science and engineering problems in which underlying physical properties (such as stability, conservation, and positivity) and desired accuracy need to be achieved. DL methods in their original forms are not capable of respecting the underlying mathematical models or achieving desired accuracy even in big-data regimes. On the other hand, many data-driven science and engineering problems, such as inverse problems, typically have limited experimental or observational data, and DL would overfit the data in this case. Leveraging information encoded in the underlying mathematical models, we argue, not only compensates missing information in low data regimes but also provides opportunities to equip DL methods with the underlying physics and hence obtaining higher accuracy. This short communication introduces several model-constrained DL approaches (including both feed-forward DNN and autoencoders) that are capable of learning not only information hidden in the training data but also in the underlying mathematical models to solve inverse problems. We present and provide intuitions for our formulations for general nonlinear problems. For linear inverse problems and linear networks, the first order optimality conditions show that our model-constrained DL approaches can learn information encoded in the underlying mathematical models, and thus can produce consistent or equivalent inverse solutions, while naive purely data-based counterparts cannot.
Data modeling and reduction for in situ is important. Feature-driven methods for in situ data analysis and reduction are a priority for future exascale machines as there are currently very few such methods. We investigate a deep-learning based workfl ow that targets in situ data processing using autoencoders. We propose a Residual Autoencoder integrated Residual in Residual Dense Block (RRDB) to obtain better performance. Our proposed framework compressed our test data into 66 KB from 2.1 MB per 3D volume timestep.
Continuous monitoring of cardiac health under free living condition is crucial to provide effective care for patients undergoing post operative recovery and individuals with high cardiac risk like the elderly. Capacitive Electrocardiogram (cECG) is o ne such technology which allows comfortable and long term monitoring through its ability to measure biopotential in conditions without having skin contact. cECG monitoring can be done using many household objects like chairs, beds and even car seats allowing for seamless monitoring of individuals. This method is unfortunately highly susceptible to motion artifacts which greatly limits its usage in clinical practice. The current use of cECG systems has been limited to performing rhythmic analysis. In this paper we propose a novel end-to-end deep learning architecture to perform the task of denoising capacitive ECG. The proposed network is trained using motion corrupted three channel cECG and a reference LEAD I ECG collected on individuals while driving a car. Further, we also propose a novel joint loss function to apply loss on both signal and frequency domain. We conduct extensive rhythmic analysis on the model predictions and the ground truth. We further evaluate the signal denoising using Mean Square Error(MSE) and Cross Correlation between model predictions and ground truth. We report MSE of 0.167 and Cross Correlation of 0.476. The reported results highlight the feasibility of performing morphological analysis using the filtered cECG. The proposed approach can allow for continuous and comprehensive monitoring of the individuals in free living conditions.
In recent years, physiological signal based authentication has shown great promises,for its inherent robustness against forgery. Electrocardiogram (ECG) signal, being the most widely studied biosignal, has also received the highest level of attention in this regard. It has been proven with numerous studies that by analyzing ECG signals from different persons, it is possible to identify them, with acceptable accuracy. In this work, we present, EDITH, a deep learning-based framework for ECG biometrics authentication system. Moreover, we hypothesize and demonstrate that Siamese architectures can be used over typical distance metrics for improved performance. We have evaluated EDITH using 4 commonly used datasets and outperformed the prior works using less number of beats. EDITH performs competitively using just a single heartbeat (96-99.75% accuracy) and can be further enhanced by fusing multiple beats (100% accuracy from 3 to 6 beats). Furthermore, the proposed Siamese architecture manages to reduce the identity verification Equal Error Rate (EER) to 1.29%. A limited case study of EDITH with real-world experimental data also suggests its potential as a practical authentication system.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا