ﻻ يوجد ملخص باللغة العربية
Although quantum channels underlie the dynamics of quantum states, maps which are not physical channels -- that is, not completely positive -- can often be encountered in settings such as entanglement detection, non-Markovian quantum dynamics, or error mitigation. We introduce an operational approach to the quantitative study of the non-physicality of linear maps based on different ways to approximate a given linear map with quantum channels. Our first measure directly quantifies the cost of simulating a given map using physically implementable quantum channels, shifting the difficulty in simulating unphysical dynamics onto the task of simulating linear combinations of quantum states. Our second measure benchmarks the quantitative advantages that a non-completely-positive map can provide in discrimination-based quantum games. Notably, we show that for any trace-preserving map, the quantities both reduce to a fundamental distance measure: the diamond norm, thus endowing this norm with new operational meanings in the characterisation of linear maps. We discuss applications of our results to structural physical approximations of positive maps, quantification of non-Markovianity, and bounding the cost of error mitigation.
Although entanglement is necessary for observing nonlocality in a Bell experiment, there are entangled states which can never be used to demonstrate nonlocal correlations. In a seminal paper [PRL 108, 200401 (2012)] F. Buscemi extended the standard B
In this work, we investigate the joint measurability of quantum effects and connect it to the study of free spectrahedra. Free spectrahedra typically arise as matricial relaxations of linear matrix inequalities. An example of a free spectrahedron is
Recently, various non-classical properties of quantum states and channels have been characterized through an advantage they provide in specific quantum information tasks over their classical counterparts. Such advantage can be typically proven to be
We prove that for any infinite-dimensional quantum channel the entropic disturbance (defined as difference between the $chi$-quantity of a generalized ensemble and that of the image of the ensemble under the channel) is lower semicontinuous on the na
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory