ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the joint measurability of quantum effects and connect it to the study of free spectrahedra. Free spectrahedra typically arise as matricial relaxations of linear matrix inequalities. An example of a free spectrahedron is the matrix diamond, which is a matricial relaxation of the $ell_1$-ball. We find that joint measurability of binary POVMs is equivalent to the inclusion of the matrix diamond into the free spectrahedron defined by the effects under study. This connection allows us to use results about inclusion constants from free spectrahedra to quantify the degree of incompatibility of quantum measurements. In particular, we completely characterize the case in which the dimension is exponential in the number of measurements. Conversely, we use techniques from quantum information theory to obtain new results on spectrahedral inclusion for the matrix diamond.
This talk is a survey of the question of joint measurability of coexistent observables and its is based on the monograph Operational Quantum Physics [1] and on the papers [2,3,4].
Occupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) steering has attracted increasing attention in recent years. Many criteria have been proposed and experimentally implemented to characterize EPR-steering. N
We associate with k hermitian Ntimes N matrices a probability measure on R^k. It is supported on the joint numerical range of the k-tuple of matrices. We call this measure the joint numerical shadow of these matrices. Let k=2. A pair of hermitian Nti
In this work, we establish the connection between the study of free spectrahedra and the compatibility of quantum measurements with an arbitrary number of outcomes. This generalizes previous results by the authors for measurements with two outcomes.
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if