ﻻ يوجد ملخص باللغة العربية
We study the forrelation problem: given a pair of $n$-bit boolean functions $f$ and $g$, estimate the correlation between $f$ and the Fourier transform of $g$. This problem is known to provide the largest possible quantum speedup in terms of its query complexity and achieves the landmark oracle separation between the complexity class BQP and the Polynomial Hierarchy. Our first result is a classical algorithm for the forrelation problem which has runtime $O(n2^{n/2})$. This is a nearly quadratic improvement over the best previously known algorithm. Secondly, we introduce a graph-based forrelation problem where $n$ binary variables live at vertices of some fixed graph and the functions $f,g$ are products of terms dscribing interactions between nearest-neighbor variables. We show that the graph-based forrelation problem can be solved on a classical computer in time $O(n^2)$ for any bipartite graph, any planar graph, or, more generally, any graph which can be partitioned into two subgraphs of constant treewidth. The graph-based forrelation is simply related to the variational energy achieved by the Quantum Approximate Optimization Algorithm (QAOA) with two entangling layers and Ising-type cost functions. By exploiting the connection between QAOA and the graph-based forrelation we were able to simulate the recently proposed Recurisve QAOA with two entangling layers and 225 qubits on a laptop computer.
It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study thei
We consider the task of estimating the expectation value of an $n$-qubit tensor product observable $O_1otimes O_2otimes cdots otimes O_n$ in the output state of a shallow quantum circuit. This task is a cornerstone of variational quantum algorithms f
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial