ﻻ يوجد ملخص باللغة العربية
We consider the task of estimating the expectation value of an $n$-qubit tensor product observable $O_1otimes O_2otimes cdots otimes O_n$ in the output state of a shallow quantum circuit. This task is a cornerstone of variational quantum algorithms for optimization, machine learning, and the simulation of quantum many-body systems. Here we study its computational complexity for constant-depth quantum circuits and three types of single-qubit observables $O_j$ which are (a) close to the identity, (b) positive semidefinite, (c) arbitrary. It is shown that the mean value problem admits a classical approximation algorithm with runtime scaling as $mathrm{poly}(n)$ and $2^{tilde{O}(sqrt{n})}$ in cases (a,b) respectively. In case (c) we give a linear-time algorithm for geometrically local circuits on a two-dimensional grid. The mean value is approximated with a small relative error in case (a), while in cases (b,c) we satisfy a less demanding additive error bound. The algorithms are based on (respectively) Barvinoks polynomial interpolation method, a polynomial approximation for the OR function arising from quantum query complexity, and a Monte Carlo method combined with Matrix Product State techniques. We also prove a technical lemma characterizing a zero-free region for certain polynomials associated with a quantum circuit, which may be of independent interest.
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study thei
Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of applications, such as approximating the permanent, and pre-conditioning linear systems to make them more numerically stable. We study the power and lim
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm
We define and study the complexity of robust polynomials for Boolean functions and the related fault-tolerant quantum decision trees, where input bits are perturbed by noise. We compare several different possible definitions. Our main results are *