ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal gauge-invariant cellular automata

100   0   0.0 ( 0 )
 نشر من قبل Marin Costes
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter, and features a global symmetry. One then extends the theory so as make the global symmetry into a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield universal gauge-invariant CA, but the latter allows for a first example where the gauge extension mediates interactions within the initial CA.



قيم البحث

اقرأ أيضاً

Gauge-invariance is a mathematical concept that has profound implications in Physics---as it provides the justification of the fundamental interactions. It was recently adapted to the Cellular Automaton (CA) framework, in a restricted case. In this p aper, this treatment is generalized to non-abelian gauge-invariance, including the notions of gauge-equivalent theories and gauge-invariants of configurations
Cellular Automaton (CA) and an Integral Value Transformation (IVT) are two well established mathematical models which evolve in discrete time steps. Theoretically, studies on CA suggest that CA is capable of producing a great variety of evolution pat terns. However computation of non-linear CA or higher dimensional CA maybe complex, whereas IVTs can be manipulated easily. The main purpose of this paper is to study the link between a transition function of a one-dimensional CA and IVTs. Mathematically, we have also established the algebraic structures of a set of transition functions of a one-dimensional CA as well as that of a set of IVTs using binary operations. Also DNA sequence evolution has been modelled using IVTs.
We investigate number conserving cellular automata with up to five inputs and two states with the goal of comparing their dynamics with diffusion. For this purpose, we introduce the concept of decompression ratio describing expansion of configuration s with finite support. We find that a large number of number-conserving rules exhibit abrupt change in the decompression ratio when the density of the initial pattern is increasing, somewhat analogous to the second order phase transition. The existence of this transition is formally proved for rule 184. Small number of rules exhibit infinite decompression ratio, and such rules may be useful for engineering of CA rules which are good models of diffusion, although they will most likely require more than two states.
We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive e lementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics.
In this paper, linear Cellular Automta (CA) rules are recursively generated using a binary tree rooted at 0. Some mathematical results on linear as well as non-linear CA rules are derived. Integers associated with linear CA rules are defined as linea r numbers and the properties of these linear numbers are studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا