ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-gravitating Equilibria of Non-minimally Coupled Dark Matter Halos

102   0   0.0 ( 0 )
 نشر من قبل Andrea Lapi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate self-gravitating equilibria of halos constituted by dark matter (DM) non-minimally coupled to gravity. In particular, we consider a theoretically motivated non-minimal coupling which may arise when the averaging/coherence length $L$ associated to the fluid description of the DM collective behavior is comparable to the local curvature scale. In the Newtonian limit, such a non-minimal coupling amounts to a modification of the Poisson equation by a term $L^2, abla^2rho$ proportional to the Laplacian of the DM density $rho$ itself. We further adopt a general power-law equation of state $ppropto rho^{Gamma}, r^alpha$ relating the DM dynamical pressure $p$ to density $rho$ and radius $r$, as expected by phase-space density stratification during the gravitational assembly of halos in a cosmological context. We confirm previous findings that, in absence of the non-minimal coupling, the resulting density $rho(r)$ features a steep central cusp and an overall shape mirroring the outcomes of $N-$body simulations in the standard $Lambda$CDM cosmology, as described by the classic NFW or Einasto profiles. Most importantly, we find that the non-minimal coupling causes the density distribution to develop an inner core and a shape closely following, out to several core scale radii, the Burkert profile. In fact, we highlight that the resulting mass distributions can fit, with an accuracy comparable to the Burkerts one, the co-added rotation curves of dwarf, DM-dominated galaxies. Finally, we show that non-minimally coupled DM halos are consistent with the observed scaling relation between the core radius $r_0$ and core density $rho_0$, in terms of an universal core surface density $rho_0times r_0$ among different galaxies.



قيم البحث

اقرأ أيضاً

127 - Lingyuan Ji 2021
We consider a model where a light scalar field (with mass $lesssim 30, {rm eV}$), conjectured to be dark matter, has a non-minimal coupling to gravity. In the non-relativistic limit, this new coupling introduces a self-interaction term in the scalar- field equation of motion, and modifies the source term for the gravitational field. Moreover, in the small-coupling limit justified by the observed dark-matter density, the system further reduces to the Gross-Pitaevskii-Poisson equations, which remarkably also arise from a self-gravitating and self-interacting Bose-Einstein condensate system. We derive predictions of our model on linear and non-linear structure formation by exploiting this unexpected connection.
We consider a simple abelian vector dark matter (DM) model, where {it only} the DM $(widetilde{X}_mu)$ couples non-minimally to the scalar curvature $(widetilde{R})$ of the background spacetime via an operator of the form $sim widetilde{X}_mu,widetil de{X}^mu,widetilde{R}$. By considering the standard freeze-out scenario, we show, it is possible to probe such a non-minimally coupled DM in direct detection experiments for a coupling strength $xisimmathcal{O}left(10^{30}right)$ and DM mass $m_Xlesssim 55$ TeV, satisfying Planck observed relic abundance and perturbative unitarity. We also discuss DM production via freeze-in, governed by the non-minimal coupling, that requires $xilesssim 10^5$ to produce the observed DM abundance over a large range of DM mass depending on the choice of the reheating temperature. We further show, even in the absence of the non-minimal coupling, it is possible to produce the whole observed DM abundance via 2-to-2 scattering of the bath particles mediated by massless gravitons.
243 - Jenny Wagner 2020
In our current best cosmological model, the vast majority of matter in the Universe is dark, consisting of yet undetected, non-baryonic particles that do not interact electro-magnetically. So far, the only significant evidence for dark matter has bee n found in its gravitational interaction, as observed in galaxy rotation curves or gravitational lensing effects. The inferred dark matter agglomerations follow almost universal mass density profiles that can be reproduced well in simulations, but have eluded an explanation from a theoretical viewpoint. Forgoing standard (astro-)physical methods, I show that it is possible to derive these profiles from an intriguingly simple mathematical approach that directly determines the most likely spatial configuration of a self-gravitating ensemble of collisionless dark matter particles.
We investigate two-field inflationary models in which scalar cosmological pertubations are generated via a spectator field nonminimally coupled to gravity, with the particular emphasis on curvaton scenarios. The principal advantage of these models is in the possibility to tune the spectator spectral index via the nonminimal coupling. Our models naturally yield red spectrum of the adiabatic perturbation demanded by observations. We study how the nonminimal coupling affects the spectrum of the curvature perturbation generated in the curvaton scenarios. In particular we find that for small, negative nonminimal couplings the spectral index gets a contribution that is negative and linear in the nonminimal coupling. Since in this way the curvature spectrum becomes redder, some of curvaton scenarios can be saved, which would otherwise be ruled out. In the power law inflation we find that a large nonminimal coupling is excluded since it gives the principal slow roll parameter that is of the order of unity. Finally, we point out that nonminimal coupling can affect the postinflationary growth of the spectator perturbation, and in this way the effectiveness of the curvaton mechanism.
A new family of nonrelativistic, Newtonian, non-quantum equilibrium configurations describing galactic halos is introduced, by considering strange quark matter conglomerates with masses larger than about 8 GeV as new possible components of the dark m atter. Originally introduced to explain the state of matter in neutron stars, such conglomerates may also form in the high-density and temperature conditions of the primordial Universe and then decouple from ordinary baryonic matter, providing the fundamental components of dark matter for the formation of pristine gravitational potential wells and the subsequent evolution of cosmic structures. The obtained results for halo mass and radius are consistent with the rotational velocity curve observed in the Galaxy. Additionally, the average density of such dark matter halos is similar to that derived for halos of dwarf spheroidal galaxies, which can therefore be interpreted as downscal
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا