ﻻ يوجد ملخص باللغة العربية
We consider a model where a light scalar field (with mass $lesssim 30, {rm eV}$), conjectured to be dark matter, has a non-minimal coupling to gravity. In the non-relativistic limit, this new coupling introduces a self-interaction term in the scalar-field equation of motion, and modifies the source term for the gravitational field. Moreover, in the small-coupling limit justified by the observed dark-matter density, the system further reduces to the Gross-Pitaevskii-Poisson equations, which remarkably also arise from a self-gravitating and self-interacting Bose-Einstein condensate system. We derive predictions of our model on linear and non-linear structure formation by exploiting this unexpected connection.
We investigate self-gravitating equilibria of halos constituted by dark matter (DM) non-minimally coupled to gravity. In particular, we consider a theoretically motivated non-minimal coupling which may arise when the averaging/coherence length $L$ as
We consider a simple abelian vector dark matter (DM) model, where {it only} the DM $(widetilde{X}_mu)$ couples non-minimally to the scalar curvature $(widetilde{R})$ of the background spacetime via an operator of the form $sim widetilde{X}_mu,widetil
We investigate two-field inflationary models in which scalar cosmological pertubations are generated via a spectator field nonminimally coupled to gravity, with the particular emphasis on curvaton scenarios. The principal advantage of these models is
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to