ترغب بنشر مسار تعليمي؟ اضغط هنا

EEGFuseNet: Hybrid Unsupervised Deep Feature Characterization and Fusion for High-Dimensional EEG with An Application to Emotion Recognition

94   0   0.0 ( 0 )
 نشر من قبل Zhen Liang Jane
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How to effectively and efficiently extract valid and reliable features from high-dimensional electroencephalography (EEG), particularly how to fuse the spatial and temporal dynamic brain information into a better feature representation, is a critical issue in brain data analysis. Most current EEG studies work in a task driven manner and explore the valid EEG features with a supervised model, which would be limited by the given labels to a great extent. In this paper, we propose a practical hybrid unsupervised deep convolutional recurrent generative adversarial network based EEG feature characterization and fusion model, which is termed as EEGFuseNet. EEGFuseNet is trained in an unsupervised manner, and deep EEG features covering both spatial and temporal dynamics are automatically characterized. Comparing to the existing features, the characterized deep EEG features could be considered to be more generic and independent of any specific EEG task. The performance of the extracted deep and low-dimensional features by EEGFuseNet is carefully evaluated in an unsupervised emotion recognition application based on three public emotion databases. The results demonstrate the proposed EEGFuseNet is a robust and reliable model, which is easy to train and performs efficiently in the representation and fusion of dynamic EEG features. In particular, EEGFuseNet is established as an optimal unsupervised fusion model with promising cross-subject emotion recognition performance. It proves EEGFuseNet is capable of characterizing and fusing deep features that imply comparative cortical dynamic significance corresponding to the changing of different emotion states, and also demonstrates the possibility of realizing EEG based cross-subject emotion recognition in a pure unsupervised manner.



قيم البحث

اقرأ أيضاً

Human affects are complex paradox and an active research domain in affective computing. Affects are traditionally determined through a self-report based psychometric questionnaire or through facial expression recognition. However, few state-of-the-ar ts pieces of research have shown the possibilities of recognizing human affects from psychophysiological and neurological signals. In this article, electroencephalogram (EEG) signals are used to recognize human affects. The electroencephalogram (EEG) of 100 participants are collected where they are given to watch one-minute video stimuli to induce different affective states. The videos with emotional tags have a variety range of affects including happy, sad, disgust, and peaceful. The experimental stimuli are collected and analyzed intensively. The interrelationship between the EEG signal frequencies and the ratings given by the participants are taken into consideration for classifying affective states. Advanced feature extraction techniques are applied along with the statistical features to prepare a fused feature vector of affective state recognition. Factor analysis methods are also applied to select discriminative features. Finally, several popular supervised machine learning classifier is applied to recognize different affective states from the discriminative feature vector. Based on the experiment, the designed random forest classifier produces 89.06% accuracy in classifying four basic affective states.
Emotion recognition based on EEG has become an active research area. As one of the machine learning models, CNN has been utilized to solve diverse problems including issues in this domain. In this work, a study of CNN and its spatiotemporal feature e xtraction has been conducted in order to explore capabilities of the model in varied window sizes and electrode orders. Our investigation was conducted in subject-independent fashion. Results have shown that temporal information in distinct window sizes significantly affects recognition performance in both 10-fold and leave-one-subject-out cross validation. Spatial information from varying electrode order has modicum effect on classification. SVM classifier depending on spatiotemporal knowledge on the same dataset was previously employed and compared to these empirical results. Even though CNN and SVM have a homologous trend in window size effect, CNN outperformed SVM using leave-one-subject-out cross validation. This could be caused by different extracted features in the elicitation process.
Emotion estimation in music listening is confronting challenges to capture the emotion variation of listeners. Recent years have witnessed attempts to exploit multimodality fusing information from musical contents and physiological signals captured f rom listeners to improve the performance of emotion recognition. In this paper, we present a study of fusion of signals of electroencephalogram (EEG), a tool to capture brainwaves at a high-temporal resolution, and musical features at decision level in recognizing the time-varying binary classes of arousal and valence. Our empirical results showed that the fusion could outperform the performance of emotion recognition using only EEG modality that was suffered from inter-subject variability, and this suggested the promise of multimodal fusion in improving the accuracy of music-emotion recognition.
Machine learning methods, such as deep learning, show promising results in the medical domain. However, the lack of interpretability of these algorithms may hinder their applicability to medical decision support systems. This paper studies an interpr etable deep learning technique, called SincNet. SincNet is a convolutional neural network that efficiently learns customized band-pass filters through trainable sinc-functions. In this study, we use SincNet to analyze the neural activity of individuals with Autism Spectrum Disorder (ASD), who experience characteristic differences in neural oscillatory activity. In particular, we propose a novel SincNet-based neural network for detecting emotions in ASD patients using EEG signals. The learned filters can be easily inspected to detect which part of the EEG spectrum is used for predicting emotions. We found that our system automatically learns the high-$alpha$ (9-13 Hz) and $beta$ (13-30 Hz) band suppression often present in individuals with ASD. This result is consistent with recent neuroscience studies on emotion recognition, which found an association between these band suppressions and the behavioral deficits observed in individuals with ASD. The improved interpretability of SincNet is achieved without sacrificing performance in emotion recognition.
We examine the utility of implicit user behavioral signals captured using low-cost, off-the-shelf devices for anonymous gender and emotion recognition. A user study designed to examine male and female sensitivity to facial emotions confirms that fema les recognize (especially negative) emotions quicker and more accurately than men, mirroring prior findings. Implicit viewer responses in the form of EEG brain signals and eye movements are then examined for existence of (a) emotion and gender-specific patterns from event-related potentials (ERPs) and fixation distributions and (b) emotion and gender discriminability. Experiments reveal that (i) Gender and emotion-specific differences are observable from ERPs, (ii) multiple similarities exist between explicit responses gathered from users and their implicit behavioral signals, and (iii) Significantly above-chance ($approx$70%) gender recognition is achievable on comparing emotion-specific EEG responses-- gender differences are encoded best for anger and disgust. Also, fairly modest valence (positive vs negative emotion) recognition is achieved with EEG and eye-based features.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا