ترغب بنشر مسار تعليمي؟ اضغط هنا

Affective State Recognition through EEG Signals Feature Level Fusion and Ensemble Classifier

137   0   0.0 ( 0 )
 نشر من قبل Samrat Kumar Dey
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human affects are complex paradox and an active research domain in affective computing. Affects are traditionally determined through a self-report based psychometric questionnaire or through facial expression recognition. However, few state-of-the-arts pieces of research have shown the possibilities of recognizing human affects from psychophysiological and neurological signals. In this article, electroencephalogram (EEG) signals are used to recognize human affects. The electroencephalogram (EEG) of 100 participants are collected where they are given to watch one-minute video stimuli to induce different affective states. The videos with emotional tags have a variety range of affects including happy, sad, disgust, and peaceful. The experimental stimuli are collected and analyzed intensively. The interrelationship between the EEG signal frequencies and the ratings given by the participants are taken into consideration for classifying affective states. Advanced feature extraction techniques are applied along with the statistical features to prepare a fused feature vector of affective state recognition. Factor analysis methods are also applied to select discriminative features. Finally, several popular supervised machine learning classifier is applied to recognize different affective states from the discriminative feature vector. Based on the experiment, the designed random forest classifier produces 89.06% accuracy in classifying four basic affective states.



قيم البحث

اقرأ أيضاً

With the advancements in social robotics and virtual avatars, it becomes increasingly important that these agents adapt their behavior to the mood, feelings and personality of their users. One such aspect of the user is empathy. Whereas many studies measure empathy through offline measures that are collected after empathic stimulation (e.g. post-hoc questionnaires), the current study aimed to measure empathy online, using brain activity collected during the experience. Participants watched an affective 360 video of a child experiencing domestic violence in a virtual reality headset while their EEG signals were recorded. Results showed a significant attenuation of alpha, theta and delta asymmetry in the frontal and central areas of the brain. Moreover, a significant relationship between participants empathy scores and their frontal alpha asymmetry at baseline was found. These results demonstrate specific brain activity alterations when participants are exposed to an affective virtual reality environment, with the level of empathy as a personality trait being visible in brain activity during a baseline measurement. These findings suggest the potential of EEG measurements for development of passive brain-computer interfaces that assess the users affective responses in real-time and consequently adapt the behavior of socially intelligent agents for a personalized interaction.
How to effectively and efficiently extract valid and reliable features from high-dimensional electroencephalography (EEG), particularly how to fuse the spatial and temporal dynamic brain information into a better feature representation, is a critical issue in brain data analysis. Most current EEG studies work in a task driven manner and explore the valid EEG features with a supervised model, which would be limited by the given labels to a great extent. In this paper, we propose a practical hybrid unsupervised deep convolutional recurrent generative adversarial network based EEG feature characterization and fusion model, which is termed as EEGFuseNet. EEGFuseNet is trained in an unsupervised manner, and deep EEG features covering both spatial and temporal dynamics are automatically characterized. Comparing to the existing features, the characterized deep EEG features could be considered to be more generic and independent of any specific EEG task. The performance of the extracted deep and low-dimensional features by EEGFuseNet is carefully evaluated in an unsupervised emotion recognition application based on three public emotion databases. The results demonstrate the proposed EEGFuseNet is a robust and reliable model, which is easy to train and performs efficiently in the representation and fusion of dynamic EEG features. In particular, EEGFuseNet is established as an optimal unsupervised fusion model with promising cross-subject emotion recognition performance. It proves EEGFuseNet is capable of characterizing and fusing deep features that imply comparative cortical dynamic significance corresponding to the changing of different emotion states, and also demonstrates the possibility of realizing EEG based cross-subject emotion recognition in a pure unsupervised manner.
We examine the utility of implicit user behavioral signals captured using low-cost, off-the-shelf devices for anonymous gender and emotion recognition. A user study designed to examine male and female sensitivity to facial emotions confirms that fema les recognize (especially negative) emotions quicker and more accurately than men, mirroring prior findings. Implicit viewer responses in the form of EEG brain signals and eye movements are then examined for existence of (a) emotion and gender-specific patterns from event-related potentials (ERPs) and fixation distributions and (b) emotion and gender discriminability. Experiments reveal that (i) Gender and emotion-specific differences are observable from ERPs, (ii) multiple similarities exist between explicit responses gathered from users and their implicit behavioral signals, and (iii) Significantly above-chance ($approx$70%) gender recognition is achievable on comparing emotion-specific EEG responses-- gender differences are encoded best for anger and disgust. Also, fairly modest valence (positive vs negative emotion) recognition is achieved with EEG and eye-based features.
This work explores the utility of implicit behavioral cues, namely, Electroencephalogram (EEG) signals and eye movements for gender recognition (GR) and emotion recognition (ER) from psychophysical behavior. Specifically, the examined cues are acquir ed via low-cost, off-the-shelf sensors. 28 users (14 male) recognized emotions from unoccluded (no mask) and partially occluded (eye or mouth masked) emotive faces; their EEG responses contained gender-specific differences, while their eye movements were characteristic of the perceived facial emotions. Experimental results reveal that (a) reliable GR and ER is achievable with EEG and eye features, (b) differential cognitive processing of negative emotions is observed for females and (c) eye gaze-based gender differences manifest under partial face occlusion, as typified by the eye and mouth mask conditions.
Epilepsy is one of the most crucial neurological disorders, and its early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, whic h provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques are introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable-Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best feature sets. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.74% in classifying into two classes and an accuracy of 99.46% in ternary classification on the Bonn dataset and 99.28% on the Freiburg dataset, reaching state-of-the-art performances on both of them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا