ﻻ يوجد ملخص باللغة العربية
Recently, Lu and Wang formulated a Drinfeld type presentation for $imath$quantum group $widetilde{{mathbf U}}^imath$ arising from quantum symmetric pairs of split affine ADE type. In this paper, we generalize their results by establishing a current presentation for $widetilde{{mathbf U}}^imath$ of arbitrary split affine type.
Let $(bf U, bf U^imath)$ be a quasi-split quantum symmetric pair of arbitrary Kac-Moody type, where quasi-split means the corresponding Satake diagram contains no black node. We give a presentation of the $imath$quantum group $bf U^imath$ with explic
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group,
Let $(bf U, bf U^imath)$ be a quantum symmetric pair of Kac-Moody type. The $imath$quantum groups $bf U^imath$ and the universal $imath$quantum groups $widetilde{bf U}^imath$ can be viewed as a generalization of quantum groups and Drinfeld doubles $w
We establish a three-parameter Schur duality between the affine Hecke algebra of type C and a coideal subalgebra of quantum affine $mathfrak{sl}_n$. At the equal parameter specializations, we obtain Schur dualities of types BCD.
For a Dynkin quiver $Q$ of type ADE and a sum $beta$ of simple roots, we construct a bimodule over the quantum loop algebra and the quiver Hecke algebra of the corresponding type via equivariant K-theory, imitating Ginzburg-Reshetikhin-Vasserots geom