ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality

84   0   0.0 ( 0 )
 نشر من قبل Ryo Fujita
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Ryo Fujita




اسأل ChatGPT حول البحث

For a Dynkin quiver $Q$ of type ADE and a sum $beta$ of simple roots, we construct a bimodule over the quantum loop algebra and the quiver Hecke algebra of the corresponding type via equivariant K-theory, imitating Ginzburg-Reshetikhin-Vasserots geometric realization of the quantum affine Schur-Weyl duality. Our construction is based on Hernandez-Leclercs isomorphism between a certain graded quiver variety and the space of representations of the quiver $Q$ of dimension vector $beta$. We identify the functor induced from our bimodule with Kang-Kashiwara-Kims generalized quantum affine Schur-Weyl duality functor. As a by-product, we verify a conjecture by Kang-Kashiwara-Kim on the simpleness of some poles of normalized R-matrices for any quiver $Q$ of type ADE.



قيم البحث

اقرأ أيضاً

241 - Ryo Fujita 2017
For a Dynkin quiver $Q$ (of type ADE), we consider a central completion of the convolution algebra of the equivariant K-group of a certain Steinberg type graded quiver variety. We observe that it is affine quasi-hereditary and prove that its category of finite-dimensional modules is identified with a block of Hernandez-Leclercs monoidal category $mathcal{C}_Q$ of modules over the quantum loop algebra $U_q(Lmathfrak{g})$ via Nakajimas homomorphism. As an application, we show that Kang-Kashiwara-Kims generalized quantum affine Schur-Weyl duality functor gives an equivalence between the category of finite-dimensional modules over the quiver Hecke algebra associated with $Q$ and Hernandez-Leclercs category $mathcal{C}_Q$, assuming the simpleness of some poles of normalized R-matrices for type E.
We establish a three-parameter Schur duality between the affine Hecke algebra of type C and a coideal subalgebra of quantum affine $mathfrak{sl}_n$. At the equal parameter specializations, we obtain Schur dualities of types BCD.
Let $U_q(mathfrak{g})$ be a twisted affine quantum group of type $A_{N}^{(2)}$ or $D_{N}^{(2)}$ and let $mathfrak{g}_{0}$ be the finite-dimensional simple Lie algebra of type $A_{N}$ or $D_{N}$. For a Dynkin quiver of type $mathfrak{g}_{0}$, we defin e a full subcategory ${mathcal C}_{Q}^{(2)}$ of the category of finite-dimensional integrable $U_q(mathfrak{g})$-modules, a twisted version of the category ${mathcal C}_{Q}$ introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur-Weyl duality, we construct an exact faithful KLR-type duality functor ${mathcal F}_{Q}^{(2)}: Rep(R) rightarrow {mathcal C}_{Q}^{(2)}$, where $Rep(R)$ is the category of finite-dimensional modules over the quiver Hecke algebra $R$ of type $mathfrak{g}_{0}$ with nilpotent actions of the generators $x_k$. We show that ${mathcal F}_{Q}^{(2)}$ sends any simple object to a simple object and induces a ring isomorphism $K(Rep(R)) simeq K({mathcal C}_{Q}^{(2)})$.
We use the isomorphisms between the $R$-matrix and Drinfeld presentations of the quantum affine algebras in types $B$, $C$ and $D$ produced in our previous work to describe finite-dimensional irreducible representations in the $R$-matrix realization. We also review the isomorphisms for the Yangians of these types and use Gauss decomposition to establish an equivalence of the descriptions of the representations in the $R$-matrix and Drinfeld presentations of the Yangians.
Expanding the classic works of Kazhdan-Lusztig and Deodhar, we establish bar involutions and canonical (i.e., quasi-parabolic KL) bases on quasi-permutation modules over the type B Hecke algebra, where the bases are parameterized by cosets of (possib ly non-parabolic) reflection subgroups of the Weyl group of type B. We formulate an $imath$Schur duality between an $imath$quantum group of type AIII (allowing black nodes in its Satake diagram) and a Hecke algebra of type B acting on a tensor space, providing a common generalization of Jimbo-Schur duality and Bao-Wangs quasi-split $imath$Schur duality. The quasi-parabolic KL bases on quasi-permutation Hecke modules are shown to match with the $imath$canonical basis on the tensor space. An inversion formula for quasi-parabolic KL polynomials is established via the $imath$Schur duality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا