ﻻ يوجد ملخص باللغة العربية
Using a hydrodynamic approach, we show that charge diffusion in two dimensional Coulomb interacting liquids with broken momentum conservation is intrinsically anomalous. The charge relaxation is governed by an overdamped, superdiffusive plasmon mode. We demonstrate that the diffusing particles follow Levy flight trajectories, and study the hydrodynamic collective modes under the influence of magnetic fields. The latter are shown to slow down the superdiffusive process. The results are argued to be relevant to electron liquids in solids, as well as plasmas.
We show that a two-dimensional (2D) isotropic Fermi liquid harbors two new types of collective modes, driven by quantum fluctuations, in addition to conventional zero sound: hidden and mirage modes. The hidden modes occur for relatively weak attracti
A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the an
Quantum spin liquids (QSLs) are fluid-like states of quantum spins where its long-range ordered state is destroyed by quantum fluctuations. The ground state of QSL and its exotic phenomena, which have been extensively discussed for decades, have yet
One-dimensional quantum fluids are conventionally described by using an effective hydrodynamic approach known as Luttinger liquid theory. As the principal simplification, a generic spectrum of the constituent particles is replaced by a linear one, wh
Two-dimensional electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO$_3$-based heterostructures, are hampered by the need of growing complex oxide over-layers thicke