ﻻ يوجد ملخص باللغة العربية
We analyze Lindblad-Gorini-Kossakowski-Sudarshan-type generators for selected periodically driven open quantum systems. All these generators can be obtained by temporal coarse-graining procedures, and we compare different coarse-graining schemes. Similar as for undriven systems, we find that a dynamically adapted coarse-graining time, effectively yielding non-Markovian dynamics by interpolating through a series of different but invididually Markovian solutions, gives the best results among the different coarse-graining schemes, albeit at highest computational cost.
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakows
Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of obs
Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter,
We present a detailed microscopic derivation for a non-Markovian master equation for a driven two-state system interacting with a general structured reservoir. The master equation is derived using the time-convolutionless projection operator techniqu
We develop a systematic coarse graining procedure for systems of $N$ qubits. We exploit the underlying geometrical structures of the associated discrete phase space to produce a coarse-grained version with reduced effective size. Our coarse-grained s