ﻻ يوجد ملخص باللغة العربية
We develop a systematic coarse graining procedure for systems of $N$ qubits. We exploit the underlying geometrical structures of the associated discrete phase space to produce a coarse-grained version with reduced effective size. Our coarse-grained spaces inherit key properties of the original ones. In particular, our procedure naturally yields a subset of the original measurement operators, which can be used to construct a coarse discrete Wigner function. These operators also constitute a systematic choice of incomplete measurements for the tomographer wishing to probe an intractably large system.
Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of obs
We analyze Lindblad-Gorini-Kossakowski-Sudarshan-type generators for selected periodically driven open quantum systems. All these generators can be obtained by temporal coarse-graining procedures, and we compare different coarse-graining schemes. Sim
We assess Coarse Graining by studying different partitions of the phase space of the Baker transformation and the periodic torus automorphisms. It turns out that the shape of autocorrelation functions for the Baker transformation is more or less repr
The connection between coarse-graining of measurement and emergence of classicality has been investigated for some time, if not well understood. Recently in (PRL $textbf{112}$, 010402, (2014)) it was pointed out that coarse-graining measurements can
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakows