ﻻ يوجد ملخص باللغة العربية
The representations of a $k$-graph $C^*$-algebra $C^*(Lambda)$ which arise from $Lambda$-semibranching function systems are closely linked to the dynamics of the $k$-graph $Lambda$. In this paper, we undertake a systematic analysis of the question of irreducibility for these representations. We provide a variety of necessary and sufficient conditions for irreducibility, as well as a number of examples indicating the optimality of our results. We also explore the relationship between irreducible $Lambda$-semibranching representations and purely atomic representations of $C^*(Lambda)$. Throughout the paper, we work in the setting of row-finite source-free $k$-graphs; this paper constitutes the first analysis of $Lambda$-semibranching representations at this level of generality.
In this paper, we discuss a method of constructing separable representations of the $C^*$-algebras associated to strongly connected row-finite $k$-graphs $Lambda$. We begin by giving an alternative characterization of the $Lambda$-semibranching funct
We initiate the study of real $C^*$-algebras associated to higher-rank graphs $Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $mathcal{CR}$ $K$-theory of $C^*_{mathbb R} (La
We develop methods for computing graded K-theory of C*-algebras as defined in terms of Kasparov theory. We establish grad
We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g
We study purely atomic representations of C*-algebras associated to row-finite and source-free higher-rank graphs. We describe when purely atomic representations are unitarily equivalent and we give necessary and sufficient conditions for a purely at