We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g
raphs for gradings induced by ${0,1}$-valued labellings of their edge sets.
We initiate the study of real $C^*$-algebras associated to higher-rank graphs $Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $mathcal{CR}$ $K$-theory of $C^*_{mathbb R} (La
mbda, gamma)$ for any involution $gamma$ on $Lambda$, and show that the $E^2$ page of this spectral sequence can be straightforwardly computed from the combinatorial data of the $k$-graph $Lambda$ and the involution $gamma$. We provide a complete description of $K^{CR}(C^*_{mathbb R}(Lambda, gamma))$ for several examples of higher-rank graphs $Lambda$ with involution.
Exploiting the graph product structure and results concerning amalgamated free products of C*-algebras we provide an explicit computation of the K-theoretic invariants of right-angled Hecke C*-algebras, including concrete algebraic representants of a
basis in K-theory. On the way, we show that these Hecke algebras are KK-equivalent with their undeformed counterparts and satisfy the UCT. Our results are applied to study the isomorphism problem for Hecke C*-algebras, highlighting the limits of K-theoretic classification, both for varying Coxeter type as well as for fixed Coxeter type.
We prove that an isomorphism of graded Grothendieck groups $K^{gr}_0$ of two Leavitt path algebras induces an isomorphism of a certain quotient of algebraic filtered $K$-theory and consequently an isomorphism of filtered $K$-theory of their associate
d graph $C^*$-algebras. As an application, we show that, since for a finite graph $E$ with no sinks, $K^{gr}_0big(L(E)big)$ of the Leavitt path algebra $L(E)$ coincides with Kriegers dimension group of its adjacency matrix $A_E$, our result relates the shift equivalence of graphs to the filtered $K$-theory and consequently gives that two arbitrary shift equivalent matrices give stably isomorphic graph $C^*$-algebras. This result was only known for irreducible graphs.
Let $A$ be a graded C*-algebra. We characterize Kasparovs K-theory group $hat{K}_0(A)$ in terms of graded *-homomorphisms by proving a general converse to the functional calculus theorem for self-adjoint regular operators on graded Hilbert modules. A
n application to the index theory of elliptic differential operators on smooth closed manifolds and asymptotic morphisms is discussed.