ﻻ يوجد ملخص باللغة العربية
Anticipated breakthroughs in solid-state quantum computing will rely on achieving unprecedented control over the wave-like states of electrons in crystalline materials. For example, an international effort to build a quantum computer that is topologically protected from decoherence is focusing on carefully engineering the wave-like states of electrons in hybrid devices that proximatize an elemental superconductor and a semiconductor nanostructure[1-6]. However, more than 90 years after Bloch derived the functional forms of electronic waves in crystals[7](now known as Bloch wavefunction) rapid scattering processes have so far prevented their direct experimental reconstruction, even in bulk materials. In high-order sideband generation (HSG)[8-15], electrons and holes generated in semiconductors by a near-infrared (NIR) laser are accelerated to high kinetic energy by a strong terahertz field, and recollide to emit NIR sidebands before they are scattered. Here we reconstruct the Bloch wavefunctions of two types of holes in gallium arsenide by experimentally measuring sideband polarizations and introducing an elegant theory that ties those polarizations to quantum interference between different recollision pathways. Because HSG can, in principle, be observed from any direct-gap semiconductor or insulator, we expect the method introduced in this Article can be used to reconstruct Bloch wavefunctions in a large class of bulk and nanostructured materials, accelerating the development of topologically-protected quantum computers as well as other important electronic and optical technologies.
Angle-resolved spectroscopy is the most powerful technique to investigate the electronic band structure of crystalline solids. To completely characterize the electronic structure of topological materials, one needs to go beyond band structure mapping
Bloch wavefunctions in solids form a representation of crystalline symmetries. Recent studies revealed that symmetry representations in band structure can be used to diagnose the topological properties of weakly interacting materials. In this work, w
The interaction between electrons and lattice vibrations determines key physical properties of materials, including their electrical and heat transport, excited electron dynamics, phase transitions, and superconductivity. We present a new ab initio m
We derive an exact formula of orbital susceptibility expressed in terms of Bloch wave functions, starting from the exact one-line formula by Fukuyama in terms of Greens functions. The obtained formula contains four contributions: (1) Landau-Peierls s
The quantum confinement of Bloch waves is fundamentally different from the well-known quantum confinement of plane waves. Unlike that obtained in the latter are all stationary states only; in the former, there is always a new type of states -- the bo