ﻻ يوجد ملخص باللغة العربية
The quantum confinement of Bloch waves is fundamentally different from the well-known quantum confinement of plane waves. Unlike that obtained in the latter are all stationary states only; in the former, there is always a new type of states -- the boundary dependent states. This distinction leads to interesting physics in low-dimensional systems.
Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give unique outputs in response to a challenge. These signatures a
The closest pair problem is a fundamental problem of computational geometry: given a set of $n$ points in a $d$-dimensional space, find a pair with the smallest distance. A classical algorithm taught in introductory courses solves this problem in $O(
The topology of pure Bi is controversial because of its very small ($sim$10 meV) band gap. Here we perform high-resolution angle-resolved photoelectron spectroscopy measurements systematically on 14$-$202 bilayers Bi films. Using high-quality films,
I offer a case that quantum query complexity still has loads of enticing and fundamental open problems -- from relativized QMA versus QCMA and BQP versus IP, to time/space tradeoffs for collision and element distinctness, to polynomial degree versus
The detailed derivation of the quantum Landau-Lifshitz-Bloch (qLLB) equation for simple spin-flip scattering mechanisms based on spin-phonon and spin-electron interactions is presented and the approximations are discussed. The qLLB equation is writte