ﻻ يوجد ملخص باللغة العربية
Automatic CT segmentation of proximal femur is crucial for the diagnosis and risk stratification of orthopedic diseases; however, current methods for the femur CT segmentation mainly rely on manual interactive segmentation, which is time-consuming and has limitations in both accuracy and reproducibility. In this study, we proposed an approach based on deep learning for the automatic extraction of the periosteal and endosteal contours of proximal femur in order to differentiate cortical and trabecular bone compartments. A three-dimensional (3D) end-to-end fully convolutional neural network, which can better combine the information between neighbor slices and get more accurate segmentation results, was developed for our segmentation task. 100 subjects aged from 50 to 87 years with 24,399 slices of proximal femur CT images were enrolled in this study. The separation of cortical and trabecular bone derived from the QCT software MIAF-Femur was used as the segmentation reference. We randomly divided the whole dataset into a training set with 85 subjects for 10-fold cross-validation and a test set with 15 subjects for evaluating the performance of models. Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively. To verify the excellent performance of our model for femoral segmentation, we measured the volume of different parts of the femur and compared it with the ground truth and the relative errors between predicted result and ground truth are all less than 5%. It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
Quantitative analysis of cell structures is essential for biomedical and pharmaceutical research. The standard imaging approach relies on fluorescence microscopy, where cell structures of interest are labeled by chemical staining techniques. However,
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical p
CT imaging is crucial for diagnosis, assessment and staging COVID-19 infection. Follow-up scans every 3-5 days are often recommended for disease progression. It has been reported that bilateral and peripheral ground glass opacification (GGO) with or
Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small number of measurements, obtained by linear projections of the signal. Block-based CS is a lightweight CS approach that is mostly suitable fo
Acute aortic syndrome (AAS) is a group of life threatening conditions of the aorta. We have developed an end-to-end automatic approach to detect AAS in computed tomography (CT) images. Our approach consists of two steps. At first, we extract N cross