ترغب بنشر مسار تعليمي؟ اضغط هنا

Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks

269   0   0.0 ( 0 )
 نشر من قبل Cem Deniz
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical practice. The purpose of this paper is to present an automatic proximal femur segmentation method that is based on deep convolutional neural networks (CNNs). This study had institutional review board approval and written informed consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal femur from 86 subject were manually-segmented by an expert. We performed experiments by training two different CNN architectures with multiple number of initial feature maps and layers, and tested their segmentation performance against the gold standard of manual segmentations using four-fold cross-validation. Automatic segmentation of the proximal femur achieved a high dice similarity score of 0.94$pm$0.05 with precision = 0.95$pm$0.02, and recall = 0.94$pm$0.08 using a CNN architecture based on 3D convolution exceeding the performance of 2D CNNs. The high segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI measurements of bone quality into clinical practice for management of osteoporosis.



قيم البحث

اقرأ أيضاً

This paper introduces new attention-based convolutional neural networks for selecting bands from hyperspectral images. The proposed approach re-uses convolutional activations at different depths, identifying the most informative regions of the spectr um with the help of gating mechanisms. Our attention techniques are modular and easy to implement, and they can be seamlessly trained end-to-end using gradient descent. Our rigorous experiments showed that deep models equipped with the attention mechanism deliver high-quality classification, and repeatedly identify significant bands in the training data, permitting the creation of refined and extremely compact sets that retain the most meaningful features.
Primary tumors have a high likelihood of developing metastases in the liver and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks (CNN) to detect liver metastases. First, th e liver was automatically segmented using the six phases of abdominal dynamic contrast enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted (DW) MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of 2 false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases.
Coronary calcium causes beam hardening and blooming artifacts on cardiac computed tomography angiography (CTA) images, which lead to overestimation of lumen stenosis and reduction of diagnostic specificity. To properly remove coronary calcification a nd restore arterial lumen precisely, we propose a machine learning-based method with a multi-step inpainting process. We developed a new network configuration, Dense-Unet, to achieve optimal performance with low computational cost. Results after the calcium removal process were validated by comparing with gold-standard X-ray angiography. Our results demonstrated that removing coronary calcification from images with the proposed approach was feasible, and may potentially improve the diagnostic accuracy of CTA.
Image representations, from SIFT and bag of visual words to Convolutional Neural Networks (CNNs) are a crucial component of almost all computer vision systems. However, our understanding of them remains limited. In this paper we study several landmar k representations, both shallow and deep, by a number of complementary visualization techniques. These visualizations are based on the concept of natural pre-image, namely a natural-looking image whose representation has some notable property. We study in particular three such visualizations: inversion, in which the aim is to reconstruct an image from its representation, activation maximization, in which we search for patterns that maximally stimulate a representation component, and caricaturization, in which the visual patterns that a representation detects in an image are exaggerated. We pose these as a regularized energy-minimization framework and demonstrate its generality and effectiveness. In particular, we show that this method can invert representations such as HOG more accurately than recent alternatives while being applicable to CNNs too. Among our findings, we show that several layers in CNNs retain photographically accurate information about the image, with different degrees of geometric and photometric invariance.
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing hig hly discriminative features to improve the classification performance, but this task is complicated by the well-known curse of dimensionality phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا