ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix weighted Kolmogorov-Rieszs compactness theorem

149   0   0.0 ( 0 )
 نشر من قبل Ciqiang Zhuo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, sever



قيم البحث

اقرأ أيضاً

The purpose of this short note is to provide a new and very short proof of a result by Sudakov, offering an important improvement of the classical result by Kolmogorov-Riesz on compact subsets of Lebesgue spaces.
The classical Szeg{o}--Kolmogorov Prediction Theorem gives necessary and sufficient condition on a weight $w$ on the unite cirlce $T$ so that the exponentials with positive integer frequences span the weighted space $L^2(T,w)$. We consider the proble m how many of these exponentials can be removed while still keeping the completeness property.
118 - Paul W.Y. Lee 2014
We give proofs of QR factorization, Choleskys factorization, and LDU factorization using the inverse function theorem. As a consequence, we obtain analytic dependence of these matrix factorizations which does not follow immediately using Gaussian elimination.
A new characterization of CMO(R^n) is established by the local mean oscillation. Some characterizations of iterated compact commutators on weighted Lebesgue spaces are given, which are new even in the unweighted setting for the first order commutators.
In this paper, we first establish the weighted compactness result for oscillation and variation associated with the truncated commutator of singular integral operators. Moreover, we establish a new $CMO(mathbb{R}^n)$ characterization via the compactn ess of oscillation and variation of commutators on weighted Lebesgue spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا