ترغب بنشر مسار تعليمي؟ اضغط هنا

On Szeg{o}--Kolmogorov Prediction Theorem

91   0   0.0 ( 0 )
 نشر من قبل Alexander Ulanovskii
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical Szeg{o}--Kolmogorov Prediction Theorem gives necessary and sufficient condition on a weight $w$ on the unite cirlce $T$ so that the exponentials with positive integer frequences span the weighted space $L^2(T,w)$. We consider the problem how many of these exponentials can be removed while still keeping the completeness property.



قيم البحث

اقرأ أيضاً

We present a characterization of sets for which Cartwrights theorem holds true. The connection is discussed between these sets and sampling sets for entire functions of exponential type.
In this paper, we prove a $Tb$ theorem on product spaces $Bbb R^ntimes Bbb R^m$, where $b(x_1,x_2)=b_1(x_1)b_2(x_2)$, $b_1$ and $b_2$ are para-accretive functions on $Bbb R^n$ and $Bbb R^m$, respectively.
We generalize the Kolmogorov continuity theorem and prove the continuity of a class of stochastic fields with the parameter. As an application, we derive the continuity of solutions for nonlocal stochastic parabolic equations driven by non-Gaussian L{e}vy noises.
We characterize even measures $mu=wdx+mu_s$ on the real line with finite entropy integral $int_{R} frac{log w(t)}{1+t^2}dt>-infty$ in terms of $2times 2$ Hamiltonian generated by $mu$ in the sense of inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا