ﻻ يوجد ملخص باللغة العربية
Datasets are not only resources for training accurate, deployable systems, but are also benchmarks for developing new modeling approaches. While large, natural datasets are necessary for training accurate systems, are they necessary for driving modeling innovation? For example, while the popular SQuAD question answering benchmark has driven the development of new modeling approaches, could synthetic or smaller benchmarks have led to similar innovations? This counterfactual question is impossible to answer, but we can study a necessary condition: the ability for a benchmark to recapitulate findings made on SQuAD. We conduct a retrospective study of 20 SQuAD modeling approaches, investigating how well 32 existing and synthesized benchmarks concur with SQuAD -- i.e., do they rank the approaches similarly? We carefully construct small, targeted synthetic benchmarks that do not resemble natural language, yet have high concurrence with SQuAD, demonstrating that naturalness and size are not necessary for reflecting historical modeling improvements on SQuAD. Our results raise the intriguing possibility that small and carefully designed synthetic benchmarks may be useful for driving the development of new modeling approaches.
Automatic Question Answering (QA) has been successfully applied in various domains such as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand comple
Transformers are not suited for processing long documents, due to their quadratically increasing memory and time consumption. Simply truncating a long document or applying the sparse attention mechanism will incur the context fragmentation problem or
The question answering system can answer questions from various fields and forms with deep neural networks, but it still lacks effective ways when facing multiple evidences. We introduce a new model called SRQA, which means Synthetic Reader for Facto
Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual model
Despite recent progress, state-of-the-art question answering models remain vulnerable to a variety of adversarial attacks. While dynamic adversarial data collection, in which a human annotator tries to write examples that fool a model-in-the-loop, ca