ﻻ يوجد ملخص باللغة العربية
The question answering system can answer questions from various fields and forms with deep neural networks, but it still lacks effective ways when facing multiple evidences. We introduce a new model called SRQA, which means Synthetic Reader for Factoid Question Answering. This model enhances the question answering system in the multi-document scenario from three aspects: model structure, optimization goal, and training method, corresponding to Multilayer Attention (MA), Cross Evidence (CE), and Adversarial Training (AT) respectively. First, we propose a multilayer attention network to obtain a better representation of the evidences. The multilayer attention mechanism conducts interaction between the question and the passage within each layer, making the token representation of evidences in each layer takes the requirement of the question into account. Second, we design a cross evidence strategy to choose the answer span within more evidences. We improve the optimization goal, considering all the answers locations in multiple evidences as training targets, which leads the model to reason among multiple evidences. Third, adversarial training is employed to high-level variables besides the word embedding in our model. A new normalization method is also proposed for adversarial perturbations so that we can jointly add perturbations to several target variables. As an effective regularization method, adversarial training enhances the models ability to process noisy data. Combining these three strategies, we enhance the contextual representation and locating ability of our model, which could synthetically extract the answer span from several evidences. We perform SRQA on the WebQA dataset, and experiments show that our model outperforms the state-of-the-art models (the best fuzzy score of our model is up to 78.56%, with an improvement of about 2%).
In this work, we describe our experiments and participating systems in the BioASQ Task 9b Phase B challenge of biomedical question answering. We have focused on finding the ideal answers and investigated multi-task fine-tuning and gradual unfreezing
Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer. In this paper, we propose a simple
Knowledge-based visual question answering (VQA) requires answering questions with external knowledge in addition to the content of images. One dataset that is mostly used in evaluating knowledge-based VQA is OK-VQA, but it lacks a gold standard knowl
We introduce DELFT, a factoid question answering system which combines the nuance and depth of knowledge graph question answering approaches with the broader coverage of free-text. DELFT builds a free-text knowledge graph from Wikipedia, with entitie
Despite recent progress, state-of-the-art question answering models remain vulnerable to a variety of adversarial attacks. While dynamic adversarial data collection, in which a human annotator tries to write examples that fool a model-in-the-loop, ca