ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Topology of Dynamic Probability Surface of an Activated Process by Persistent Homology

100   0   0.0 ( 0 )
 نشر من قبل Farid Manuchehrfar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To gain insight into reaction mechanism of activated processes, we introduce an exact approach for quantifying the topology of high-dimensional probability surfaces of the underlying dynamic processes. Instead of Morse indexes, we study the homology groups of a sequence of superlevel sets of the probability surface over high-dimensional configuration spaces using persistent homology. For alanine-dipeptide isomerization, a prototype of activated processes, we identify locations of probability peaks and connecting-ridges, along with measures of their global prominence. Instead of a saddle-point, the transition state ensemble (TSE) of conformations are at the most prominent probability peak after reactants/products, when proper reaction coordinates are included. Intuition-based models, even those exhibiting a double-well, fail to capture the dynamics of the activated process. Peak occurrence, prominence, and locations can be distorted upon subspace projection. While principal component analysis account for conformational variance, it inflates the complexity of the surface topology and destroy dynamic properties of the topological features. In contrast, TSE emerges naturally as the most prominent peak beyond the reactant/product basins, when projected to a subspace of minimum dimension containing the reaction coordinates. Our approach is general and can be applied to investigate the topology of high-dimensional probability surfaces of other activated process.



قيم البحث

اقرأ أيضاً

We construct the exact partition function of the Potts model on a complete graph subject to external fields with linear and nematic type couplings. The partition function is obtained as a solution to a linear diffusion equation and the free energy, i n the thermodynamic limit, follows from its semiclassical limit. Analysis of singularities of the equations of state reveals the occurrence of phase transitions of nematic type at not zero external fields and allows for an interpretation of the phase transitions in terms of shock dynamics in the space of thermodynamics variables. The approach is shown at work in the case of a q-state model for q=3 but the method generalises to arbitrary q.
280 - Yi Qiao , Pei Sun , Zhirong Xin 2019
An integrable anisotropic Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and scalar chirality terms is constructed. After proving the integrability, we obtain the exact solution of the system. The ground stat e and the elementary excitations are also studied. It is shown that the spinon excitation of the present model possesses a novel triple arched structure. The elementary excitation is gapless if the anisotropic parameter $eta$ is real while the elementary excitation has an enhanced gap by the next-nearest-neighbour and chiral three-spin interactions if the anisotropic parameter $eta$ is imaginary. The method of this paper provides a general way to construct new integrable models with next-nearest-neighbour interactions.
We introduce and study the following model for random resonances: we take a collection of point interactions $Upsilon_j$ generated by a simple finite point process in the 3-D space and consider the resonances of associated random Schrodinger Hamilton ians $H_Upsilon = -Delta + ``sum mathfrak{m}(alpha) delta (x - Upsilon_j)``$. These resonances are zeroes of a random exponential polynomial, and so form a point process $Sigma (H_Upsilon)$ in the complex plane $mathbb{C}$. We show that the counting function for the set of random resonances $Sigma (H_Upsilon)$ in $mathbb{C}$-discs with growing radii possesses Weyl-type asymptotics almost surely for a uniform binomial process $Upsilon$, and obtain an explicit formula for the limiting distribution as $m to infty$ of the leading parameter of the asymptotic chain of `most narrow resonances generated by a sequence of uniform binomial processes $Upsilon^m$ with $m$ points. We also pose a general question about the limiting behavior of the point process formed by leading parameters of asymptotic sequences of resonances. Our study leads to questions about metric characteristics for the combinatorial geometry of $m$ samples of a random point in the 3-D space and related statistics of extreme values.
Extended Thermodynamics is a very important theory: for example, it predicts hyperbolicity, finite speeds of propagation waves as well as continuous dependence on initial data. Therefore, it constitutes a significative improvement of ordinary thermod ynamics. Here its methods are applied to the case of an arbitrary, but fixed, number of moments. The kinetic approach has already been developed in literature; then, the macroscopic approach is here considered and the constitutive functions appearing in the balance equations are determined up to whatever order with respect to thermodynamical equilibrium. The results of the kinetic approach are a particular case of the present ones.
249 - Woojin Kim , Facundo Memoli 2018
Characterizing the dynamics of time-evolving data within the framework of topological data analysis (TDA) has been attracting increasingly more attention. Popular instances of time-evolving data include flocking/swarming behaviors in animals and soci al networks in the human sphere. A natural mathematical model for such collective behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS). In this paper we extend the Rips filtration stability result for (static) metric spaces to the setting of DMSs. We do this by devising a certain three-parameter spatiotemporal filtration of a DMS. Applying the homology functor to this filtration gives rise to multidimensional persistence module derived from the DMS. We show that this multidimensional module enjoys stability under a suitable generalization of the Gromov-Hausdorff distance which permits metrizing the collection of all DMSs. On the other hand, it is recognized that, in general, comparing two multidimensional persistence modules leads to intractable computational problems. For the purpose of practical comparison of DMSs, we focus on both the rank invariant or the dimension function of the multidimensional persistence module that is derived from a DMS. We specifically propose to utilize a certain metric d for comparing these invariants: In our work this d is either (1) a certain generalization of the erosion distance by Patel, or (2) a specialized version of the well known interleaving distance. We also study the computational complexity associated to both choices of d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا