ﻻ يوجد ملخص باللغة العربية
Characterizing the dynamics of time-evolving data within the framework of topological data analysis (TDA) has been attracting increasingly more attention. Popular instances of time-evolving data include flocking/swarming behaviors in animals and social networks in the human sphere. A natural mathematical model for such collective behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS). In this paper we extend the Rips filtration stability result for (static) metric spaces to the setting of DMSs. We do this by devising a certain three-parameter spatiotemporal filtration of a DMS. Applying the homology functor to this filtration gives rise to multidimensional persistence module derived from the DMS. We show that this multidimensional module enjoys stability under a suitable generalization of the Gromov-Hausdorff distance which permits metrizing the collection of all DMSs. On the other hand, it is recognized that, in general, comparing two multidimensional persistence modules leads to intractable computational problems. For the purpose of practical comparison of DMSs, we focus on both the rank invariant or the dimension function of the multidimensional persistence module that is derived from a DMS. We specifically propose to utilize a certain metric d for comparing these invariants: In our work this d is either (1) a certain generalization of the erosion distance by Patel, or (2) a specialized version of the well known interleaving distance. We also study the computational complexity associated to both choices of d.
We derive the relationship between the persistent homology barcodes of two dual filtered CW complexes. Applied to greyscale digital images, we obtain an algorithm to convert barcodes between the two different (dual) topological models of pixel connectivity.
In many applications concerning the comparison of data expressed by $mathbb{R}^m$-valued functions defined on a topological space $X$, the invariance with respect to a given group $G$ of self-homeomorphisms of $X$ is required. While persistent homolo
Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many
An augmented metric space is a metric space $(X, d_X)$ equipped with a function $f_X: X to mathbb{R}$. This type of data arises commonly in practice, e.g, a point cloud $X$ in $mathbb{R}^d$ where each point $xin X$ has a density function value $f_X(x
The present lack of a stable method to compare persistent homology groups with torsion is a relevant problem in current research about Persistent Homology and its applications in Pattern Recognition. In this paper we introduce a pseudo-distance d_T t