ﻻ يوجد ملخص باللغة العربية
We study a non standard infinite horizon, infinite dimensional linear-quadratic control problem arising in the physics of non-stationary states (see e.g. cite{BDGJL4,BertiniGabrielliLebowitz05}): finding the minimum energy to drive a given stationary state $bar x=0$ (at time $t=-infty$) into an arbitrary non-stationary state $x$ (at time $t=0$). This is the opposite to what is commonly studied in the literature on null controllability (where one drives a generic state $x$ into the equilibrium state $bar x=0$). Consequently, the Algebraic Riccati Equation (ARE) associated to this problem is non-standard since the sign of the linear part is opposite to the usual one and since it is intrinsically unbounded. Hence the standard theory of AREs does not apply. The analogous finite horizon problem has been studied in the companion paper cite{AcquistapaceGozzi17}. Here, similarly to such paper, we prove that the linear selfadjoint operator associated to the value function is a solution of the above mentioned ARE. Moreover, differently to cite{AcquistapaceGozzi17}, we prove that such solution is the maximal one. The first main result (Theorem ref{th:maximalARE}) is proved by approximating the problem with suitable auxiliary finite horizon problems (which are different from the one studied in cite{AcquistapaceGozzi17}). Finally in the special case where the involved operators commute we characterize all solutions of the ARE (Theorem ref{th:sol=proj}) and we apply this to the Landau-Ginzburg model.
In this paper we study the existence of stationary solutions for stochastic partial differential equations. We establish a new connection between $L_{rho}^2({mathbb{R}^{d}};{mathbb{R}^{1}}) otimes L_{rho}^2({mathbb{R}^{d}};{mathbb{R}^{d}})$ valued so
We investigate stochastic optimization problems under relaxed assumptions on the distribution of noise that are motivated by empirical observations in neural network training. Standard results on optimal convergence rates for stochastic optimization
Potential buyers of a product or service tend to read reviews from previous consumers before making their decisions. This behavior is modeled by a market of Bayesian consumers with heterogeneous preferences, who sequentially decide whether to buy an
We study the structure of stationary non equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible tran
Systems kept out of equilibrium in stationary states by an external source of energy store an energy $Delta U=U-U_0$. $U_0$ is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine $Delta U$ for two model