ﻻ يوجد ملخص باللغة العربية
In this paper we study the existence of stationary solutions for stochastic partial differential equations. We establish a new connection between $L_{rho}^2({mathbb{R}^{d}};{mathbb{R}^{1}}) otimes L_{rho}^2({mathbb{R}^{d}};{mathbb{R}^{d}})$ valued solutions of backward doubly stochastic differential equations (BDSDEs) on infinite horizon and the stationary solutions of the SPDEs. Moreover, we prove the existence and uniqueness of the solutions of BDSDEs on both finite and infinite horizons, so obtain the solutions of initial value problems and the stationary solutions (independent of any initial value) of SPDEs. The connection of the weak solutions of SPDEs and BDSDEs has independent interests in the areas of both SPDEs and BSDEs.
We study the nonlinear stochastic heat equation driven by space-time white noise in the case that the initial datum $u_0$ is a (possibly signed) measure. In this case, one cannot obtain a mild random-field solution in the usual sense. We prove instea
We study a non standard infinite horizon, infinite dimensional linear-quadratic control problem arising in the physics of non-stationary states (see e.g. cite{BDGJL4,BertiniGabrielliLebowitz05}): finding the minimum energy to drive a given stationary
We consider semilinear stochastic evolution equations on Hilbert spaces with multiplicative Wiener noise and linear drift term of the type $A + varepsilon G$, with $A$ and $G$ maximal monotone operators and $varepsilon$ a small parameter, and study t
We start by introducing a new definition of solutions to heat-based SPDEs driven by space-time white noise: SDDEs (stochastic differential-difference equations) limits solutions. In contrast to the standard direct definition of SPDEs solutions; this
In this paper we study the regularity of non-linear parabolic PDEs and stochastic PDEs on metric measure spaces admitting heat kernels. In particular we consider mild function solutions to abstract Cauchy problems and show that the unique solution is