ترغب بنشر مسار تعليمي؟ اضغط هنا

On statistical inference when fixed points of belief propagation are unstable

126   0   0.0 ( 0 )
 نشر من قبل Sidhanth Mohanty
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many statistical inference problems correspond to recovering the values of a set of hidden variables from sparse observations on them. For instance, in a planted constraint satisfaction problem such as planted 3-SAT, the clauses are sparse observations from which the hidden assignment is to be recovered. In the problem of community detection in a stochastic block model, the community labels are hidden variables that are to be recovered from the edges of the graph. Inspired by ideas from statistical physics, the presence of a stable fixed point for belief propogation has been widely conjectured to characterize the computational tractability of these problems. For community detection in stochastic block models, many of these predictions have been rigorously confirmed. In this work, we consider a general model of statistical inference problems that includes both community detection in stochastic block models, and all planted constraint satisfaction problems as special cases. We carry out the cavity method calculations from statistical physics to compute the regime of parameters where detection and recovery should be algorithmically tractable. At precisely the predicted tractable regime, we give: (i) a general polynomial-time algorithm for the problem of detection: distinguishing an input with a planted signal from one without; (ii) a general polynomial-time algorithm for the problem of recovery: outputting a vector that correlates with the hidden assignment significantly better than a random guess would.



قيم البحث

اقرأ أيضاً

We study several bayesian inference problems for irreversible stochastic epidemic models on networks from a statistical physics viewpoint. We derive equations which allow to accurately compute the posterior distribution of the time evolution of the s tate of each node given some observations. At difference with most existing methods, we allow very general observation models, including unobserved nodes, state observations made at different or unknown times, and observations of infection times, possibly mixed together. Our method, which is based on the Belief Propagation algorithm, is efficient, naturally distributed, and exact on trees. As a particular case, we consider the problem of finding the zero patient of a SIR or SI epidemic given a snapshot of the state of the network at a later unknown time. Numerical simulations show that our method outperforms previous ones on both synthetic and real networks, often by a very large margin.
94 - Sungsoo Ahn 2015
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds algorithm as a sequence of LPs.
In this note, we design a discrete random walk on the real line which takes steps $0, pm 1$ (and one with steps in ${pm 1, 2}$) where at least $96%$ of the signs are $pm 1$ in expectation, and which has $mathcal{N}(0,1)$ as a stationary distribution. As an immediate corollary, we obtain an online version of Banaszczyks discrepancy result for partial colorings and $pm 1, 2$ signings. Additionally, we recover linear time algorithms for logarithmic bounds for the Koml{o}s conjecture in an oblivious online setting.
We establish connections between several properties of topological dynamical systems, such as: - every point is generic for an ergodic measure, - the map sending points to the measures they generate is continuous, - the system splits into uniquely (a lternatively, strictly) ergodic subsystems, - the map sending ergodic measures to their topological supports is continuous, - the Cesaro means of every continuous function converge uniformly.
We propose a nonparametric generalization of belief propagation, Kernel Belief Propagation (KBP), for pairwise Markov random fields. Messages are represented as functions in a reproducing kernel Hilbert space (RKHS), and message updates are simple li near operations in the RKHS. KBP makes none of the assumptions commonly required in classical BP algorithms: the variables need not arise from a finite domain or a Gaussian distribution, nor must their relations take any particular parametric form. Rather, the relations between variables are represented implicitly, and are learned nonparametrically from training data. KBP has the advantage that it may be used on any domain where kernels are defined (Rd, strings, groups), even where explicit parametric models are not known, or closed form expressions for the BP updates do not exist. The computational cost of message updates in KBP is polynomial in the training data size. We also propose a constant time approximate message update procedure by representing messages using a small number of basis functions. In experiments, we apply KBP to image denoising, depth prediction from still images, and protein configuration prediction: KBP is faster than competing classical and nonparametric approaches (by orders of magnitude, in some cases), while providing significantly more accurate results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا