ﻻ يوجد ملخص باللغة العربية
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds algorithm as a sequence of LPs.
Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitab
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner
Inference in continuous label Markov random fields is a challenging task. We use particle belief propagation (PBP) for solving the inference problem in continuous label space. Sampling particles from the belief distribution is typically done by using
Consider a 2-D square array of qubits of extent $Ltimes L$. We provide a proof that the minimum weight perfect matching problem associated with running a particular class of topological quantum error correction codes on this array can be exactly solv
A recent paper cite{CaeCaeSchBar06} proposed a provably optimal, polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Their fundamental result is that the