ﻻ يوجد ملخص باللغة العربية
Two $q$-supercongruences of truncated basic hypergeometric series containing two free parameters are established by employing specific identities for basic hypergeometric series. The results partly extend two $q$-supercongruences that were earlier conjectured by the same authors and involve $q$-supercongruences modulo the square and the cube of a cyclotomic polynomial. One of the newly proved $q$-supercongruences is even conjectured to hold modulo the fourth power of a cyclotomic polynomial.
We prove a two-parameter family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George Andrews multiseries extension of the Watson transformation, and a Karlsson--Minton type
By means of the $q$-Zeilberger algorithm, we prove a basic hypergeometric supercongruence modulo the fifth power of the cyclotomic polynomial $Phi_n(q)$. This result appears to be quite unique, as in the existing literature so far no basic hypergeome
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $
The scaled inverse of a nonzero element $a(x)in mathbb{Z}[x]/f(x)$, where $f(x)$ is an irreducible polynomial over $mathbb{Z}$, is the element $b(x)in mathbb{Z}[x]/f(x)$ such that $a(x)b(x)=c pmod{f(x)}$ for the smallest possible positive integer sca
Inspired by the recent work on $q$-congruences and the quadratic summation formula of Rahman, we provide some new $q$-supercongruences. By taking $qto 1$ in one of our results, we obtain a new Ramanujan-type supercongruence, which has the same right-