ﻻ يوجد ملخص باللغة العربية
We prove a two-parameter family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George Andrews multiseries extension of the Watson transformation, and a Karlsson--Minton type summation for very-well-poised basic hypergeometric series due to George Gasper. The new family of $q$-congruences is then used to prove two conjectures posed earlier by the authors.
By means of the $q$-Zeilberger algorithm, we prove a basic hypergeometric supercongruence modulo the fifth power of the cyclotomic polynomial $Phi_n(q)$. This result appears to be quite unique, as in the existing literature so far no basic hypergeome
Two $q$-supercongruences of truncated basic hypergeometric series containing two free parameters are established by employing specific identities for basic hypergeometric series. The results partly extend two $q$-supercongruences that were earlier co
We provide several new $q$-congruences for truncated basic hypergeometric series, mostly of arbitrary order. Our results include congruences modulo the square or the cube of a cyclotomic polynomial, and in some instances, parametric generalizations t
We provide several new $q$-congruences for truncated basic hypergeometric series with the base being an even power of $q$. Our results mainly concern congruences modulo the square or the cube of a cyclotomic polynomial and complement corresponding on
The scaled inverse of a nonzero element $a(x)in mathbb{Z}[x]/f(x)$, where $f(x)$ is an irreducible polynomial over $mathbb{Z}$, is the element $b(x)in mathbb{Z}[x]/f(x)$ such that $a(x)b(x)=c pmod{f(x)}$ for the smallest possible positive integer sca