ترغب بنشر مسار تعليمي؟ اضغط هنا

The ambivalent competition of Coulomb and van-der-Waals interactions in Xe-Cs+ aggregates on Cu(111) surfaces

50   0   0.0 ( 0 )
 نشر من قبل John Thomas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microscopic insight into interactions is a key for understanding the properties of heterogenous interfaces. We analyze local attraction in non-covalently bonded Xe{Cs+ aggregates and monolayers on Cu(111) as well as repulsion upon electron transfer. Using two-photon photoemission spectroscopy, scanning tunneling microscopy, and coupled cluster calculations combined with an image-charge model we explain the intricate impact Xe has on Cs+/Cu(111). We find that attraction between Cs+ and Xe counterbalances the screened Coulomb repulsion between Cs+ ions on Cu(111). Furthermore, we observe that the Cs 6s electron is repelled from Cu(111) due to xenons electron density. Together, this yields a dual, i.e., attractive or repulsive, response of Xe depending on the positive or negative charge of the respective counterparticle, which emphasizes the importance of the Coulomb interaction in these systems.



قيم البحث

اقرأ أيضاً

The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
456 - R. Brako , D. Sokcevic , P. Lazic 2010
We calculate the properties of a graphene monolayer on the Ir(111) surface, using the model in which the periodicities of the two structures are assumed equal, instead of the observed slight mismatch which leads to a large superperiodic unit cell. We use the Density Functional Theory approach supplemented by the recently developed vdW-DF nonlocal correlation functional. The latter is essential for treating the van der Waals interaction, which is crucial for the adsorption distances and energies of the rather weakly bound graphene. When additional iridium atoms are put on top of graphene, the electronic structure of C atoms acquires the sp3 character and strong bonds with the iridium atoms are formed. We discuss the validity of the approximations used, and the relevance for other graphene-metal systems.
104 - V. Zobac , R. Robles , N. Lorente 2020
We report on a theoretical study of adsorption of 4-Acetylbiphenyl molecule and its diffusion properties in the main directions of the Au(111) surface. Structural changes of the molecule, which are induced by adsorption lead to stronger conjugation o f the $pi$-system. The molecule is adsorbed in a flat configuration on the surface with roughly the same binding energy along the [110] and [112] directions, in good agreement with experiments. Furthermore, the diffusion barriers imply an important directionality of the molecule-surface interactions. This is somewhat surprising because our calculations show that the prevailing interaction is the long-range molecule-surface van der Waals interaction. Despite of its weakness, the van der Waals interaction discriminates the preferential adsorption sites as well as imposes a molecular geometry that needs to be considered when rationalizing the diffusion barriers.
Different atomistic registry between the layers forming the inner and outer nanotubes can form one-dimensional (1D) van der Waals (vdW) moire superlattices. Unlike the two-dimensional (2D) vdW moire superlattices, effects of 1D vdW moire superlattice s on electronic and optical properties in 1D moire superlattices are not well understood, and they are often neglected. In this Perspective, we summarize new experimental observations and theoretical perspectives related to interlayer interactions in double-walled carbon nanotubes (DWNTs), a representative 1D vdW moire system. Our discussion will focus on new optical features emerging from the interlayer electronic interactions in DWNTs. Exciting correlated physics and exotic phases of matter are anticipated to exist in 1D vdW moire superlattices, analogous with those discovered in the 2D vdW moire superlattices. We further discuss the future directions in probing and uncovering interesting physical phenomena in 1D moire superlattices.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا