ﻻ يوجد ملخص باللغة العربية
We report on a theoretical study of adsorption of 4-Acetylbiphenyl molecule and its diffusion properties in the main directions of the Au(111) surface. Structural changes of the molecule, which are induced by adsorption lead to stronger conjugation of the $pi$-system. The molecule is adsorbed in a flat configuration on the surface with roughly the same binding energy along the [110] and [112] directions, in good agreement with experiments. Furthermore, the diffusion barriers imply an important directionality of the molecule-surface interactions. This is somewhat surprising because our calculations show that the prevailing interaction is the long-range molecule-surface van der Waals interaction. Despite of its weakness, the van der Waals interaction discriminates the preferential adsorption sites as well as imposes a molecular geometry that needs to be considered when rationalizing the diffusion barriers.
On a gold surface, supramolecules composed of 4-acetylbiphenyl molecules show structural directionality, reproducibility and robustness to external perturbations. We investigate the assembly of those molecules on the Au(111) surface and analyze how t
The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as ei
Rattling motion of fillers in cage materials has been of great interest for their import roles in superconductivity and thermoelectric applications. The standing waves of the rattling oscillations are normally lower in energy than the propagating wav
Quantum Monte Carlo (QMC) methods have been used to obtain accurate binding-energy data for pairs of parallel thin metallic wires and layers modeled by 1D and 2D homogeneous electron gases. We compare our QMC binding energies with results obtained wi
Raman scattering is a ubiquitous phenomenon in light-matter interactions which reveals a materials electronic, structural and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material propert