ﻻ يوجد ملخص باللغة العربية
We say that $M$ and $S$ form a textsl{splitting} of $G$ if every nonzero element $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, while $0$ has no such representation. The splitting is called {it nonsingular} if $gcd(|G|, a) = 1$ for any $ain M$. In this paper, we focus our study on nonsingular splittings of cyclic groups. We introduce a new notation --direct KM logarithm and we prove that if there is a prime $q$ such that $M$ splits $mathbb{Z}_q$, then there are infinitely many primes $p$ such that $M$ splits $mathbb{Z}_p$.
An orthomorphism over a finite field $mathbb{F}_q$ is a permutation $theta:mathbb{F}_qmapstomathbb{F}_q$ such that the map $xmapstotheta(x)-x$ is also a permutation of $mathbb{F}_q$. The degree of an orthomorphism of $mathbb{F}_q$, that is, the degre
A $(k,m)$-Furstenberg set $S subset mathbb{F}_q^n$ over a finite field is a set that has at least $m$ points in common with a $k$-flat in every direction. The question of determining the smallest size of such sets is a natural generalization of the f
In this short note, we study the distribution of spreads in a point set $mathcal{P} subseteq mathbb{F}_q^d$, which are analogous to angles in Euclidean space. More precisely, we prove that, for any $varepsilon > 0$, if $|mathcal{P}| geq (1+varepsilon
We investigate equiangular lines in finite orthogonal geometries, focusing specifically on equiangular tight frames (ETFs). In parallel with the known correspondence between real ETFs and strongly regular graphs (SRGs) that satisfy certain parameter
Given three nonnegative integers $p,q,r$ and a finite field $F$, how many Hankel matrices $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ over $F$ have rank $leq r$ ? This question is classical, and the answer ($q^{2r}$ when $rleqminleft{ p,qright}