ترغب بنشر مسار تعليمي؟ اضغط هنا

Degree of Orthomorphism Polynomials over Finite Fields

84   0   0.0 ( 0 )
 نشر من قبل Ian Wanless
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An orthomorphism over a finite field $mathbb{F}_q$ is a permutation $theta:mathbb{F}_qmapstomathbb{F}_q$ such that the map $xmapstotheta(x)-x$ is also a permutation of $mathbb{F}_q$. The degree of an orthomorphism of $mathbb{F}_q$, that is, the degree of the associated reduced permutation polynomial, is known to be at most $q-3$. We show that this upper bound is achieved for all prime powers $q otin{2, 3, 5, 8}$. We do this by finding two orthomorphisms in each field that differ on only three elements of their domain. Such orthomorphisms can be used to construct $3$-homogeneous Latin bitrades.



قيم البحث

اقرأ أيضاً

231 - Lucas Reis , Qiang Wang 2021
In this paper we introduce the additive analogue of the index of a polynomial over finite fields. We study several problems in the theory of polynomials over finite fields in terms of their additive indices, such as value set sizes, bounds on multipl icative character sums, and characterizations of permutation polynomials.
81 - Pingzhi Yuan 2021
We say that $M$ and $S$ form a textsl{splitting} of $G$ if every nonzero element $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, while $0$ has no such representation. The splitting is called {it nonsingular} if $gc d(|G|, a) = 1$ for any $ain M$. In this paper, we focus our study on nonsingular splittings of cyclic groups. We introduce a new notation --direct KM logarithm and we prove that if there is a prime $q$ such that $M$ splits $mathbb{Z}_q$, then there are infinitely many primes $p$ such that $M$ splits $mathbb{Z}_p$.
In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these complete permutation polynomials are also proposed.
68 - Wayne Barrett 2006
Our main result is a sharp bound for the number of vertices in a minimal forbidden subgraph for the graphs having minimum rank at most 3 over the finite field of order 2. We also list all 62 such minimal forbidden subgraphs. We conclude by exploring how some of these results over the finite field of order 2 extend to arbitrary fields and demonstrate that at least one third of the 62 are minimal forbidden subgraphs over an arbitrary field for the class of graphs having minimum rank at most 3 in that field.
95 - Bjorn Poonen 2017
In 2005, Kayal suggested that Schoofs algorithm for counting points on elliptic curves over finite fields might yield an approach to factor polynomials over finite fields in deterministic polynomial time. We present an exposition of his idea and then explain details of a generalization involving Pilas algorithm for abelian varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا