ﻻ يوجد ملخص باللغة العربية
Conventional energy filters for x-ray imaging are based on absorbing materials which attenuate low energy photons, sometimes combined with an absorption edge, thus also discriminating towards photons of higher energies. These filters are fairly inefficient, in particular for photons of higher energies, and other methods for achieving a narrower bandwidth have been proposed. Such methods include various types of monochromators, based on for instance mosaic crystals or refractive multi-prism x-ray lenses (MPLs). Prism-array lenses (PALs) are similar to MPLs, but are shorter, have larger apertures, and higher transmission. A PAL consists of a number of small prisms arranged in columns perpendicular to the optical axis. The column height decreases along the optical axis so that the projection of lens material is approximately linear with a Fresnel phase-plate pattern superimposed on it. The focusing effect is one dimensional, and the lens is chromatic. Hence, unwanted energies can be blocked by placing a slit in the image plane of a desired energy. We present the first experimental and theoretical results on an energy filter based on a silicon PAL. The study includes an evaluation of the spectral shaping properties of the filter as well as a quantification of the achievable increase in dose efficiency compared to standard methods. Previously, PALs have been investigated with synchrotron radiation, but in this study a medical imaging setup, based on a regular x-ray tube, is considered.
Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted
Chromatic properties of the multi-prism and prism-array X-ray lenses (MPL and PAL) can potentially be utilized for efficient energy filtering and dose reduction in mammography. The line-shaped foci of the lenses are optimal for coupling to photon-cou
Currently, dual-energy X-ray phase contrast imaging is usually conducted with an X-ray Talbot-Lau interferometer. However, in this system, the two adopted energy spectra have to be chosen carefully in order to match well with the phase grating. For e
Two-dimensional Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20keV. The TAIs create intensity modulations with a high compression ratio on the mic
In this paper, we present a new method to generate an instantaneous volumetric image using a single x-ray projection. To fully extract motion information hidden in projection images, we partitioned a projection image into small patches. We utilized a